Menu Close

If-a-b-gt-0-such-that-2a-b-2-then-find-the-minimum-value-of-1-4a-2-1-b-2-1-2-2a-2-b-4-a-1-b-2-2a-2-b-4-




Question Number 184535 by CrispyXYZ last updated on 08/Jan/23
If a, b>0 such that 2a+b=2,  then find the minimum value of:  1)  (4a^2 +1)(b^2 +1)  2)  ((2a^2 −b+4)/(a+1))+((b^2 −2a−2)/(b+4))
Ifa,b>0suchthat2a+b=2,thenfindtheminimumvalueof:1)(4a2+1)(b2+1)2)2a2b+4a+1+b22a2b+4
Answered by cortano1 last updated on 08/Jan/23
(1)  { ((b=2−2a)),((f(a)=(4a^2 +1)(4a^2 −8a+5))) :}   f(a)=16a^4 −32a^3 +24a^2 −8a+5   f ′(a)=64a^3 −96a^2 +48a−8=0     ⇒a=(1/2) ; b=2−1=1   min {(4a^2 +1)(b^2 +1)}= 2×2=4
(1){b=22af(a)=(4a2+1)(4a28a+5)f(a)=16a432a3+24a28a+5f(a)=64a396a2+48a8=0a=12;b=21=1min{(4a2+1)(b2+1)}=2×2=4
Answered by mr W last updated on 08/Jan/23
(1)  a+(b/2)=1  a=cos^2  θ  b=2 sin^2  θ  (4 cos^4  θ+1)(4 sin^4  θ+1)  =1+4(cos^4  θ+sin^4  θ)+16 (cos θ sin θ)^4   =1+4−2(2 cos θ sin θ)^2 +(2 cos θ sin θ)^4   =5−2 sin^2  2θ+ sin^4  2θ  =4+(1−sin^2  2θ)^2   =4+cos^4  2θ ≥ 4=minimum
(1)a+b2=1a=cos2θb=2sin2θ(4cos4θ+1)(4sin4θ+1)=1+4(cos4θ+sin4θ)+16(cosθsinθ)4=1+42(2cosθsinθ)2+(2cosθsinθ)4=52sin22θ+sin42θ=4+(1sin22θ)2=4+cos42θ4=minimum
Answered by greougoury555 last updated on 08/Jan/23
(1) f(a,b,λ)=(4a^2 +1)(b^2 +1)+λ(2a+b−2)   (∂f/∂a) = 8a(b^2 +1)+2λ=0   (∂f/∂b) = 2b(4a^2 +1)+λ=0   (∂f/∂λ) = 2a+b−2=0⇒b=2−2a  ⇒ −4a(b^2 +1)=−2b(4a^2 +1)  ⇒a(4a^2 −8a+5)=(1−a)(4a^2 +1)  ⇒4a^3 −8a^2 +5a=−4a^3 +4a^2 −a+1  ⇒8a^3 −12a^2 +6a−1=0  ⇒(2a−1)^3 =0 ; a=(1/2)  ∴ minimum (4a^2 +1)(b^2 +1)= 4
(1)f(a,b,λ)=(4a2+1)(b2+1)+λ(2a+b2)fa=8a(b2+1)+2λ=0fb=2b(4a2+1)+λ=0fλ=2a+b2=0b=22a4a(b2+1)=2b(4a2+1)a(4a28a+5)=(1a)(4a2+1)4a38a2+5a=4a3+4a2a+18a312a2+6a1=0(2a1)3=0;a=12minimum(4a2+1)(b2+1)=4
Answered by ajfour last updated on 08/Jan/23
1)  2a=t  t+b=2  (t^2 +1)(b^2 +1)   is minimum  for t=b=1  , so    the minimum is 2×2=4  2)  f(t,b)=((t^2 −2b+8)/(t+2))+((b^2 −t−2)/(b+4))  let  t+2=p     b+4=q  p+q=8  f(p,q)=((p^2 −4p−2q+20)/p)+((q^2 −8q−p+16)/q)    =p−4+((20)/p)−((2q)/p)+q−8−(p/q)+((16)/q)    =−4+((20)/p)+((16)/q)−((2q)/p)−(p/q)    =−4+((2(10−q))/p)+(((16−p))/q)    =−4+((2(2+p))/p)+(((8+q))/q)    =−1+(4/p)+(8/q)  f(p)=−1+(4/p)+(8/(8−p))  (df/dp)=−(4/p^2 )+(8/((8−p)^2 )) =0  ⇒   ((8−p)/p)=±(√2)      p=(8/(1+(√2)))   or   p=−(8/(((√2)−1)))  f_1 =−1+(4/p)+(8/(8−p))=((1+(√2))/2)+(1/(1−(1/(1+(√2)))))      =−1+((1+(√2))/2)+((1+(√2))/( (√2)))=(1/2)+(√2)    f_2 =−1−((((√2)−1))/2)+(1/(1+(1/( (√2)−1))))       =−1+((1−(√2)+2−(√2))/2)=(1/2)−(√2)
1)2a=tt+b=2(t2+1)(b2+1)isminimumfort=b=1,sotheminimumis2×2=42)f(t,b)=t22b+8t+2+b2t2b+4lett+2=pb+4=qp+q=8f(p,q)=p24p2q+20p+q28qp+16q=p4+20p2qp+q8pq+16q=4+20p+16q2qppq=4+2(10q)p+(16p)q=4+2(2+p)p+(8+q)q=1+4p+8qf(p)=1+4p+88pdfdp=4p2+8(8p)2=08pp=±2p=81+2orp=8(21)f1=1+4p+88p=1+22+1111+2=1+1+22+1+22=12+2f2=1(21)2+11+121=1+12+222=122
Commented by mr W last updated on 08/Jan/23
please recheck here:  f(t,b)=((t^2 /2−2b+8)/(t+2))+((b^2 −t−2)/(b+4))  i think for (2) there is no nice looking  solution.
pleaserecheckhere:f(t,b)=t2/22b+8t+2+b2t2b+4ithinkfor(2)thereisnonicelookingsolution.
Commented by ajfour last updated on 08/Jan/23
no  sir    f(t,b)=((t^2 −2b+8)/(t+2))          =((4a^2 −2b+8)/(2a+2))
nosirf(t,b)=t22b+8t+2=4a22b+82a+2
Commented by mr W last updated on 08/Jan/23
yes, you are right.
yes,youareright.
Answered by Frix last updated on 08/Jan/23
2)  b=2−2a  ⇒  −((a^2 +7)/((a+1)(a−3)))  ((d[−((a^2 +7)/((a+1)(a−3)))])/da)=((2(a^2 +10a−7))/((a+1)^2 (a−3)^2 ))=0  ⇒  a=−5±4(√2)  local max=(1/2)−(√2) at a=−5−4(√2)  local min=(1/2)+(√2) at a=−5+4(√2)
2)b=22aa2+7(a+1)(a3)d[a2+7(a+1)(a3)]da=2(a2+10a7)(a+1)2(a3)2=0a=5±42localmax=122ata=542localmin=12+2ata=5+42
Answered by mr W last updated on 08/Jan/23
(2)  2a+b=2  ⇒0<a<1, 0<b<2    ((2a^2 +2a−2+4)/(a+1))+((b^2 +b−2−2)/(b+4))  =((2(a^2 +a+1))/(a+1))+((b^2 +b−4)/(b+4))  =(((2a)^2 )/(2a+2))+((b^2 −8)/(b+4))+3  =(((2−b)^2 )/(4−b))+((b^2 −8)/(4+b))+3  =((4(b^2 −b−4))/(16−b^2 ))+3  =((4(12−b))/(16−b^2 ))−1  =4((1/(4−b))+(2/(4+b))_(f(b)) )−1  f′(b)=(1/((4−b)^2 ))−(2/((4+b)^2 ))=0  (4+b)^2 −2(4−b)^2 =0  (b−(√2)b+4+4(√2))(b+(√2)b+4−4(√2))=0  ⇒b=((4((√2)−1))/( (√2)+1))=4(3−2(√2)) or  ⇒b=((4((√2)+1))/( (√2)−1))=4(3+2(√2)) (>2, rejected)  at b=4(3−2(√2)) minimum=(√2)+(1/2)
(2)2a+b=20<a<1,0<b<22a2+2a2+4a+1+b2+b22b+4=2(a2+a+1)a+1+b2+b4b+4=(2a)22a+2+b28b+4+3=(2b)24b+b284+b+3=4(b2b4)16b2+3=4(12b)16b21=4(14b+24+bf(b))1f(b)=1(4b)22(4+b)2=0(4+b)22(4b)2=0(b2b+4+42)(b+2b+442)=0b=4(21)2+1=4(322)orb=4(2+1)21=4(3+22)(>2,rejected)atb=4(322)minimum=2+12

Leave a Reply

Your email address will not be published. Required fields are marked *