Menu Close

if-a-b-gt-0-then-prove-that-a-b-6-a-15-b-15-a-21-b-21-a-3-b-3-2-a-5-b-5-3-a-7-b-7-3-1-




Question Number 157417 by MathSh last updated on 23/Oct/21
if  a;b>0  then prove that:  (((a + b)^6  (a^(15)  + b^(15) ) (a^(21)  + b^(21) ))/((a^3  + b^3 )^2  (a^5  + b^5 )^3  (a^7  + b^7 )^3 )) ≥ 1
$$\mathrm{if}\:\:\mathrm{a};\mathrm{b}>\mathrm{0}\:\:\mathrm{then}\:\mathrm{prove}\:\mathrm{that}: \\ $$$$\frac{\left(\mathrm{a}\:+\:\mathrm{b}\right)^{\mathrm{6}} \:\left(\mathrm{a}^{\mathrm{15}} \:+\:\mathrm{b}^{\mathrm{15}} \right)\:\left(\mathrm{a}^{\mathrm{21}} \:+\:\mathrm{b}^{\mathrm{21}} \right)}{\left(\mathrm{a}^{\mathrm{3}} \:+\:\mathrm{b}^{\mathrm{3}} \right)^{\mathrm{2}} \:\left(\mathrm{a}^{\mathrm{5}} \:+\:\mathrm{b}^{\mathrm{5}} \right)^{\mathrm{3}} \:\left(\mathrm{a}^{\mathrm{7}} \:+\:\mathrm{b}^{\mathrm{7}} \right)^{\mathrm{3}} }\:\geqslant\:\mathrm{1} \\ $$$$ \\ $$
Answered by upendramajhi last updated on 23/Oct/21
$$ \\ $$$$ \\ $$
Commented by Rasheed.Sindhi last updated on 23/Oct/21
Or he had booked space for his answer!
$${Or}\:{he}\:{had}\:{booked}\:{space}\:{for}\:{his}\:{answer}! \\ $$
Commented by mr W last updated on 23/Oct/21
please check your pen, it has no ink  more. or if you are using an invisible  ink, please tell us how to make it  visible again.
$${please}\:{check}\:{your}\:{pen},\:{it}\:{has}\:{no}\:{ink} \\ $$$${more}.\:{or}\:{if}\:{you}\:{are}\:{using}\:{an}\:{invisible} \\ $$$${ink},\:{please}\:{tell}\:{us}\:{how}\:{to}\:{make}\:{it} \\ $$$${visible}\:{again}. \\ $$
Commented by Rasheed.Sindhi last updated on 23/Oct/21
He has written with white chalk  on white board!
$$\mathcal{H}{e}\:{has}\:{written}\:{with}\:\boldsymbol{{white}}\:{chalk} \\ $$$${on}\:\boldsymbol{{white}}\:{board}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *