Menu Close

if-a-b-gt-1-lim-x-0-ln-b-x-ax-




Question Number 103654 by Study last updated on 16/Jul/20
 if a,b>1  lim_(x→0^+ ) ((ln(b−x))/(ax))=???
ifa,b>1limx0+ln(bx)ax=???
Answered by Worm_Tail last updated on 16/Jul/20
      lim_(x→0^+ ) ((ln(b−x))/(ax))=lim((1/a)ln(b−x)^(1/x) )        lim_(x→0^+ ) ((ln(b−x))/(ax))=lim((1/a)ln(b(1−(x/b)))^(1/x)         lim_(x→0^+ ) ((ln(b−x))/(ax))=lim(1/a)lnb^(1/x) (1−(x/b))^(1/x)         lim_(x→0^+ ) ((ln(b−x))/(ax))=lim(1/a)lnb^(1/x) +lim(1/a)ln(1+(x/(−b)))        lim_(x→0^+ ) ((ln(b−x))/(ax))=lim(1/a)lnb^(1/x) +lim(1/(a(−b)))ln(1+(x/(−b)))^((−b)/x)         lim_(x→0^+ ) ((ln(b−x))/(ax))=lim(1/a)lnb^(1/x) −(1/(ab))    since  b>1        lim_(x→0^+ ) ((ln(b−x))/(ax))=infinity−(1/(ab))   =infinity
limx0+ln(bx)ax=lim(1aln(bx)1x)limx0+ln(bx)ax=lim(1aln(b(1xb))1xlimx0+ln(bx)ax=lim1alnb1x(1xb)1xlimx0+ln(bx)ax=lim1alnb1x+lim1aln(1+xb)limx0+ln(bx)ax=lim1alnb1x+lim1a(b)ln(1+xb)bxlimx0+ln(bx)ax=lim1alnb1x1absinceb>1limx0+ln(bx)ax=infinity1ab=infinity

Leave a Reply

Your email address will not be published. Required fields are marked *