Menu Close

If-a-b-N-and-a-b-100-a-6-b-8-how-many-digits-can-the-product-have-at-most-Answer-17-




Question Number 174144 by Shrinava last updated on 25/Jul/22
If  a,b∈N  and  a ∙ b = 100  a^6  ∙ b^8   how many digits can the product  have at most?  Answer:  17
Ifa,bNandab=100a6b8howmanydigitscantheproducthaveatmost?Answer:17
Answered by mr W last updated on 26/Jul/22
if a natural number N has n digits, it  means  10^(n−1) ≤N<10^n   log (10^(n−1) )≤log (N)<log 10^n   n−1≤log (N)<n  log (N)<n≤log (N)+1  ⇒n=⌊log (N)⌋+1  N=a^6 b^8 =(((100)/b))^6 b^8 =10^(12) b^2   N_(max) =10^(12) ×(100)^2 =10^(16)   n=⌊log N_(max) ⌋+1     =⌊log 10^(16) ⌋+1     =⌊16⌋+1     =17
ifanaturalnumberNhasndigits,itmeans10n1N<10nlog(10n1)log(N)<log10nn1log(N)<nlog(N)<nlog(N)+1n=log(N)+1N=a6b8=(100b)6b8=1012b2Nmax=1012×(100)2=1016n=logNmax+1=log1016+1=16+1=17
Commented by Shrinava last updated on 06/Aug/22
thank you dear professor
thankyoudearprofessor

Leave a Reply

Your email address will not be published. Required fields are marked *