Menu Close

if-A-B-pi-4-so-proof-1-tan-A-1-tan-B-2-




Question Number 21142 by oyshi last updated on 14/Sep/17
if A+B=(π/4)  so proof (1+tan A)(1+tan B)=2
$${if}\:{A}+{B}=\frac{\pi}{\mathrm{4}} \\ $$$${so}\:{proof}\:\left(\mathrm{1}+\mathrm{tan}\:{A}\right)\left(\mathrm{1}+\mathrm{tan}\:{B}\right)=\mathrm{2} \\ $$
Commented by dioph last updated on 14/Sep/17
tan A+B = 1  ((tan A + tan B)/(1 − tan A tan B)) = 1  tan A + tan B = 1 − tan A tan B  tan A + tan B + tan A tan B + 1 = 2  (1+tan A)(1+tan B) = 2 ■
$$\mathrm{tan}\:{A}+{B}\:=\:\mathrm{1} \\ $$$$\frac{\mathrm{tan}\:{A}\:+\:\mathrm{tan}\:{B}}{\mathrm{1}\:−\:\mathrm{tan}\:{A}\:\mathrm{tan}\:{B}}\:=\:\mathrm{1} \\ $$$$\mathrm{tan}\:{A}\:+\:\mathrm{tan}\:{B}\:=\:\mathrm{1}\:−\:\mathrm{tan}\:{A}\:\mathrm{tan}\:{B} \\ $$$$\mathrm{tan}\:{A}\:+\:\mathrm{tan}\:{B}\:+\:\mathrm{tan}\:{A}\:\mathrm{tan}\:{B}\:+\:\mathrm{1}\:=\:\mathrm{2} \\ $$$$\left(\mathrm{1}+\mathrm{tan}\:{A}\right)\left(\mathrm{1}+\mathrm{tan}\:{B}\right)\:=\:\mathrm{2}\:\blacksquare \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *