Menu Close

if-a-b-R-and-a-2-1-b-2-1-9-6-a-b-find-a-2-b-2-




Question Number 151391 by mathdanisur last updated on 20/Aug/21
if  a;b∈R  and  (a^2 +1)(b^2 +1)+9=6(a+b)  find  a^2 +b^2 =?
$$\mathrm{if}\:\:\mathrm{a};\mathrm{b}\in\mathbb{R}\:\:\mathrm{and} \\ $$$$\left(\mathrm{a}^{\mathrm{2}} +\mathrm{1}\right)\left(\mathrm{b}^{\mathrm{2}} +\mathrm{1}\right)+\mathrm{9}=\mathrm{6}\left(\mathrm{a}+\mathrm{b}\right) \\ $$$$\mathrm{find}\:\:\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} =? \\ $$
Answered by dumitrel last updated on 20/Aug/21
(a^2 +1)(b^2 +1)≥^(cbs) (a+b)^2 ⇒  6(a+b)≥(a+b)^2 +9⇒(a+b−3)^2 ≤0  a+b=3⇒(ab)^2 +9−2ab+1=9⇒ab=1⇒  a^2 +b^2 =7
$$\left({a}^{\mathrm{2}} +\mathrm{1}\right)\left({b}^{\mathrm{2}} +\mathrm{1}\right)\overset{{cbs}} {\geqslant}\left({a}+{b}\right)^{\mathrm{2}} \Rightarrow \\ $$$$\mathrm{6}\left({a}+{b}\right)\geqslant\left({a}+{b}\right)^{\mathrm{2}} +\mathrm{9}\Rightarrow\left({a}+{b}−\mathrm{3}\right)^{\mathrm{2}} \leqslant\mathrm{0} \\ $$$${a}+{b}=\mathrm{3}\Rightarrow\left({ab}\right)^{\mathrm{2}} +\mathrm{9}−\mathrm{2}{ab}+\mathrm{1}=\mathrm{9}\Rightarrow{ab}=\mathrm{1}\Rightarrow \\ $$$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} =\mathrm{7} \\ $$
Commented by mathdanisur last updated on 20/Aug/21
Thank You Ser Cool
$$\mathrm{Thank}\:\mathrm{You}\:\boldsymbol{\mathrm{S}}\mathrm{er}\:\mathrm{Cool} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *