Menu Close

If-a-b-R-satisfy-a-4-b-4-6a-2-b-2-9-and-ab-a-b-a-b-11-then-a-2-b-2-




Question Number 151198 by liberty last updated on 19/Aug/21
If a,b∈R satisfy a^4 +b^4 −6a^2 b^2 =9 and  ab(a−b)(a+b)=−11 then a^2 +b^2 =?
Ifa,bRsatisfya4+b46a2b2=9andab(ab)(a+b)=11thena2+b2=?
Answered by EDWIN88 last updated on 19/Aug/21
(1) a^4 +b^4 −6a^2 b^2 =9         (a^2 −b^2 )^2 −4a^2 b^2 =9         (a^2 −b^2 )^2 =4(ab)^2 +9   (2) ab(a−b)(a+b)=−11         ab(a^2 −b^2 )=−11           a^2 −b^2 =−((11)/(ab))  (1)=(2)  ⇒((121)/((ab)^2 )) = 4(ab)^2 +9 ; let (ab)^2 =X  ⇒4X^2 +9X−121=0  ⇒X = ((−9+(√(2017)))/8)   inserting to equation (1)  we get a^4 +b^4 −6a^2 b^2 =9  ⇒(a^2 +b^2 )^2 −8(ab)^2 =9  ⇒a^2 +b^2 =(√(8((((√(2017))−9)/8))+9))  ⇒a^2 +b^2  = (√(√(2017))) =((2017))^(1/4)  .
(1)a4+b46a2b2=9(a2b2)24a2b2=9(a2b2)2=4(ab)2+9(2)ab(ab)(a+b)=11ab(a2b2)=11a2b2=11ab(1)=(2)121(ab)2=4(ab)2+9;let(ab)2=X4X2+9X121=0X=9+20178insertingtoequation(1)wegeta4+b46a2b2=9(a2+b2)28(ab)2=9a2+b2=8(201798)+9a2+b2=2017=20174.

Leave a Reply

Your email address will not be published. Required fields are marked *