Menu Close

if-a-b-s-and-a-3-b-3-t-find-a-2-b-2-and-a-4-b-4-interms-of-s-and-t-




Question Number 49642 by maxmathsup by imad last updated on 08/Dec/18
if  a+b =s and a^3  +b^3  =t  find a^2  +b^2   and a^4  +b^4  interms of s and t .
$${if}\:\:{a}+{b}\:={s}\:{and}\:{a}^{\mathrm{3}} \:+{b}^{\mathrm{3}} \:={t}\:\:{find}\:{a}^{\mathrm{2}} \:+{b}^{\mathrm{2}} \:\:{and}\:{a}^{\mathrm{4}} \:+{b}^{\mathrm{4}} \:{interms}\:{of}\:{s}\:{and}\:{t}\:. \\ $$
Answered by mr W last updated on 08/Dec/18
a^3 +b^3 =(a+b)(a^2 −ab+b^2 )=(a+b)[(a+b)^2 −3ab]  t=s(s^2 −3ab)  ⇒ab=(1/3)(s^2 −(t/s))  a^2 +b^2 =a^2 +2ab+b^2 −2ab=(a+b)^2 −2ab  =s^2 −(2/3)(s^2 −(t/s))=(1/3)(s^2 +((2t)/s))  a^4 +b^4 =(a^2 +b^2 )^2 −2(ab)^2 =(1/9)(s^2 +((2t)/s))^2 −(2/9)(s^2 −(t/s))^2   =(1/9)(s^4 +((4t^2 )/s^2 )+2st)−(2/9)(s^4 +(t^2 /s^2 )−2st)  =(1/9)(((2t^2 )/s^2 )+6st−s^4 )
$${a}^{\mathrm{3}} +{b}^{\mathrm{3}} =\left({a}+{b}\right)\left({a}^{\mathrm{2}} −{ab}+{b}^{\mathrm{2}} \right)=\left({a}+{b}\right)\left[\left({a}+{b}\right)^{\mathrm{2}} −\mathrm{3}{ab}\right] \\ $$$${t}={s}\left({s}^{\mathrm{2}} −\mathrm{3}{ab}\right) \\ $$$$\Rightarrow{ab}=\frac{\mathrm{1}}{\mathrm{3}}\left({s}^{\mathrm{2}} −\frac{{t}}{{s}}\right) \\ $$$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} ={a}^{\mathrm{2}} +\mathrm{2}{ab}+{b}^{\mathrm{2}} −\mathrm{2}{ab}=\left({a}+{b}\right)^{\mathrm{2}} −\mathrm{2}{ab} \\ $$$$={s}^{\mathrm{2}} −\frac{\mathrm{2}}{\mathrm{3}}\left({s}^{\mathrm{2}} −\frac{{t}}{{s}}\right)=\frac{\mathrm{1}}{\mathrm{3}}\left({s}^{\mathrm{2}} +\frac{\mathrm{2}{t}}{{s}}\right) \\ $$$${a}^{\mathrm{4}} +{b}^{\mathrm{4}} =\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)^{\mathrm{2}} −\mathrm{2}\left({ab}\right)^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{9}}\left({s}^{\mathrm{2}} +\frac{\mathrm{2}{t}}{{s}}\right)^{\mathrm{2}} −\frac{\mathrm{2}}{\mathrm{9}}\left({s}^{\mathrm{2}} −\frac{{t}}{{s}}\right)^{\mathrm{2}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{9}}\left({s}^{\mathrm{4}} +\frac{\mathrm{4}{t}^{\mathrm{2}} }{{s}^{\mathrm{2}} }+\mathrm{2}{st}\right)−\frac{\mathrm{2}}{\mathrm{9}}\left({s}^{\mathrm{4}} +\frac{{t}^{\mathrm{2}} }{{s}^{\mathrm{2}} }−\mathrm{2}{st}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{9}}\left(\frac{\mathrm{2}{t}^{\mathrm{2}} }{{s}^{\mathrm{2}} }+\mathrm{6}{st}−{s}^{\mathrm{4}} \right) \\ $$
Commented by maxmathsup by imad last updated on 08/Dec/18
thank you sir .
$${thank}\:{you}\:{sir}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *