Menu Close

if-a-b-sin-a-b-sin-and-a-tan-2-b-tan-2-c-then-prove-that-the-following-i-sin-2bc-a-2-b-2-c-2-ii-sin-2ac-a-2-b-2-c-2-




Question Number 144305 by gsk2684 last updated on 24/Jun/21
if (a−b)sin(θ+φ)=(a+b)sin(θ−φ)   and a tan(θ/2) − b tan(φ/2) = c then  prove that the following  i) sinφ = ((2bc)/(a^2 −b^2 −c^2 ))   ii) sinθ = ((2ac)/(a^2 −b^2 +c^2 ))
if(ab)sin(θ+ϕ)=(a+b)sin(θϕ)andatanθ2btanϕ2=cthenprovethatthefollowingi)sinϕ=2bca2b2c2ii)sinθ=2aca2b2+c2
Answered by liberty last updated on 24/Jun/21
⇔ (a−b)(sin θ cos φ+cos θ sin φ)=        (a+b)(sin θ cos φ−cos θ sin φ)  ⇔ a cos θ sin φ −bsin θ cos φ=      −acos θ sin φ+bsin  θ cos  φ  ⇔ 2a cos θ sin φ =  2b sin θ cos φ  ⇔ (a/b) = ((sin θ cos φ)/(cos θ sin φ))  ⇔ (a/b) = tan θ cot φ  ⇔ a tan φ = b tan θ  ⇔ a(((2 tan  (φ/2))/(1−tan^2  (φ/2))))=b(((2tan (θ/2))/(1−tan^2  (θ/2))))...(i)  tan ((θ/2))=(c/a)+(b/a)tan ((φ/2))...(ii)  let tan ((φ/2))= x  ⇔ a((x/(1−x^2 )))=b((((c/a)+(b/a)x)/(1−(((c+bx)/a))^2 )))  ⇔a((x/(1−x^2 )))=b(((a(c+bx))/(a^2 −c^2 −2bcx−b^2 x^2 )))  ⇔(x/(1−x^2 )) = ((bc+b^2 x)/(a^2 −c^2 −2bcx−b^2 x^2 ))   ⇔a^2 x−c^2 x−2bcx^2 −b^2 x^3 =bc+b^2 x−bcx^2 −b^2 x^3   ⇒a^2 x−c^2 x−b^2 x−bcx^2 −bc=0  ⇒bcx^2 +(b^2 +c^2 −a^2 )x+bc =0  ⇒x = ((a^2 −b^2 −c^2 +(√((b^2 +c^2 −a^2 )^2 −4(bc)^2 )))/(2bc))  ⇒x=((a^2 −b^2 −c^2 +(√((b^2 +c^2 −a^2 +2bc)(b^2 +c^2 −a^2 −2bc))))/(2bc))  ⇒x=((a^2 −b^2 −c^2 +(√(((b+c)^2 −a^2 )((b−c)^2 −a^2 ))))/(2bc))
(ab)(sinθcosϕ+cosθsinϕ)=(a+b)(sinθcosϕcosθsinϕ)acosθsinϕbsinθcosϕ=acosθsinϕ+bsinθcosϕ2acosθsinϕ=2bsinθcosϕab=sinθcosϕcosθsinϕab=tanθcotϕatanϕ=btanθa(2tanϕ21tan2ϕ2)=b(2tanθ21tan2θ2)(i)tan(θ2)=ca+batan(ϕ2)(ii)lettan(ϕ2)=xa(x1x2)=b(ca+bax1(c+bxa)2)a(x1x2)=b(a(c+bx)a2c22bcxb2x2)x1x2=bc+b2xa2c22bcxb2x2a2xc2x2bcx2b2x3=bc+b2xbcx2b2x3a2xc2xb2xbcx2bc=0bcx2+(b2+c2a2)x+bc=0x=a2b2c2+(b2+c2a2)24(bc)22bcx=a2b2c2+(b2+c2a2+2bc)(b2+c2a22bc)2bcx=a2b2c2+((b+c)2a2)((bc)2a2)2bc
Commented by gsk2684 last updated on 24/Jun/21
thank you very much
thankyouverymuch
Answered by ajfour last updated on 24/Jun/21
((sin (θ+φ))/(sin (θ−φ)))=((a+b)/(a−b))   ⇒ ((sin (θ+φ)+sin (θ−φ))/(sin (θ+φ)−sin (θ−φ)))     =((2a)/(2b))=(a/b)  ⇒ ((sin θcos φ)/(cos θsin φ))=(a/b)  ⇒ (((2tan (θ/2))/(1−tan^2 (θ/2))))(((1−tan^2 (φ/2))/(2tan (φ/2))))=(a/b)  ((p(1−q^2 ))/(q(1−p^2 )))=(a/b)     ....(I)  &  atan (θ/2)−btan (φ/2)=c  ⇒  ap−bq=c       .....(II)  ((p{b^2 −(ap−c)^2 })/((ap−c)(1−p^2 )))=a  b^2 p−a^2 p^3 +2acp^2 −c^2 p    =−a^2 p^3 +acp^2 +a^2 p−ac  ⇒ acp^2 +(b^2 −c^2 −a^2 )p+ac=0  ⇒  p+(1/p)=((a^2 +c^2 −b^2 )/(ac))  sin θ=((2p)/(1+p^2 ))=(2/((1/p)+p))  ⇒  sin𝛉=((2ac)/(a^2 −b^2 +c^2 ))  similarly from (I), (II)  (((c+bq)(1−q^2 ))/(q{a^2 −(c+bq)^2 }))=(1/b)  ⇒  −b^2 q^3 −bcq^2 +b^2 q+bc      =−b^2 q^3 −2bcq^2 +a^2 q−c^2 q  ⇒ bcq^2 +(b^2 −a^2 +c^2 )q+bc=0  ⇒ q+(1/q)=((a^2 −b^2 −c^2 )/(bc))  sin φ=((2q)/(1+q^2 ))=(2/((1/q)+q))  ⇒ sin𝛗=((2bc)/(a^2 −b^2 −c^2 ))  ★
sin(θ+ϕ)sin(θϕ)=a+babsin(θ+ϕ)+sin(θϕ)sin(θ+ϕ)sin(θϕ)=2a2b=absinθcosϕcosθsinϕ=ab(2tanθ21tan2θ2)(1tan2ϕ22tanϕ2)=abp(1q2)q(1p2)=ab.(I)&atanθ2btanϕ2=capbq=c..(II)p{b2(apc)2}(apc)(1p2)=ab2pa2p3+2acp2c2p=a2p3+acp2+a2pacacp2+(b2c2a2)p+ac=0p+1p=a2+c2b2acsinθ=2p1+p2=21p+psinθ=2aca2b2+c2similarlyfrom(I),(II)(c+bq)(1q2)q{a2(c+bq)2}=1bb2q3bcq2+b2q+bc=b2q32bcq2+a2qc2qbcq2+(b2a2+c2)q+bc=0q+1q=a2b2c2bcsinϕ=2q1+q2=21q+qsinϕ=2bca2b2c2
Commented by gsk2684 last updated on 24/Jun/21
thank you very much
thankyouverymuch

Leave a Reply

Your email address will not be published. Required fields are marked *