Question Number 84157 by redmiiuser last updated on 10/Mar/20
$${if}\:{a}\:{circle}\:{having}\:{an}\: \\ $$$${equation}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{6}{x}−\mathrm{8}{y}=\mathrm{0} \\ $$$${is}\:{intersected}\:{at}\:{A}\:{and}\:{B} \\ $$$${by}\:{x}+{y}=\mathrm{1}.{find}\:{the}\: \\ $$$${equation}\:{of}\:{the}\:{circle} \\ $$$${on}\:{AB}\:{as}\:{diameter} \\ $$
Answered by TANMAY PANACEA last updated on 10/Mar/20
$${x}^{\mathrm{2}} +\left(\mathrm{1}−{x}\right)^{\mathrm{2}} −\mathrm{6}{x}−\mathrm{8}\left(\mathrm{1}−{x}\right)=\mathrm{0} \\ $$$${x}^{\mathrm{2}} +\mathrm{1}−\mathrm{2}{x}+{x}^{\mathrm{2}} −\mathrm{6}{x}−\mathrm{8}+\mathrm{8}{x}=\mathrm{0} \\ $$$$\mathrm{2}{x}^{\mathrm{2}} −\mathrm{7}=\mathrm{0}\:\:\:\:{x}=\pm\sqrt{\frac{\mathrm{7}}{\mathrm{2}}}\: \\ $$$${A}\left(\sqrt{\frac{\mathrm{7}}{\mathrm{2}}}\:,\mathrm{1}−\sqrt{\frac{\mathrm{7}}{\mathrm{2}}}\:\right)\:\:{B}\left(−\sqrt{\frac{\mathrm{7}}{\mathrm{2}}}\:,\mathrm{1}+\sqrt{\frac{\mathrm{7}}{\mathrm{2}}}\:\right) \\ $$$${centre}\:{of}\:{required}\:{circle}\:{mid}\:{point}\:{of}\:{AB} \\ $$$$\left(\mathrm{0},\mathrm{1}\right)\:\:{diameter}={distance}\:{between}\:{AB} \\ $$$$\mathrm{2}{r}=\left[\left(\mathrm{2}\sqrt{\frac{\mathrm{7}}{\mathrm{2}}}\:\right)^{\mathrm{2}} +\left(\mathrm{2}\sqrt{\frac{\mathrm{7}}{\mathrm{2}}}\:\right)^{\mathrm{2}} \right]^{\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$$\mathrm{2}{r}=\left[\left(\mathrm{4}×\frac{\mathrm{7}}{\mathrm{2}}+\mathrm{4}×\frac{\mathrm{7}}{\mathrm{2}}\right)\right]^{\frac{\mathrm{1}}{\mathrm{2}}} =\mathrm{2}\sqrt{\mathrm{7}}\: \\ $$$${r}=\sqrt{\mathrm{7}}\: \\ $$$${eqn}\:{circle} \\ $$$$\left({x}−\mathrm{0}\right)^{\mathrm{2}} +\left({y}−\mathrm{1}\right)^{\mathrm{2}} =\left(\sqrt{\mathrm{7}}\:\right)^{\mathrm{2}} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{2}{y}−\mathrm{6}=\mathrm{0} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Answered by john santu last updated on 10/Mar/20
$$\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{circle}\: \\ $$$$\left(\mathrm{x}−\sqrt{\frac{\mathrm{7}}{\mathrm{2}}}\right)\left(\mathrm{x}+\sqrt{\frac{\mathrm{7}}{\mathrm{2}}}\right)+\left(\mathrm{y}−\left(\mathrm{1}+\sqrt{\frac{\mathrm{7}}{\mathrm{2}}}\right)\right)\left(\mathrm{y}−\left(\mathrm{1}−\sqrt{\frac{\mathrm{7}}{\mathrm{2}}}\right)\right)=\mathrm{0} \\ $$$$\mathrm{x}^{\mathrm{2}} −\frac{\mathrm{7}}{\mathrm{2}}+\mathrm{y}^{\mathrm{2}} −\mathrm{2y}−\frac{\mathrm{5}}{\mathrm{2}}\:=\:\mathrm{0} \\ $$$$\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{y}^{\mathrm{2}} \:−\mathrm{2y}\:−\:\mathrm{6}\:=\mathrm{0} \\ $$
Answered by TANMAY PANACEA last updated on 10/Mar/20
$${another}\:{way} \\ $$$${the}\:{eqn}\:{of}\:{circle} \\ $$$$\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{6}{x}−\mathrm{8}{y}\right)+\lambda\left({x}+{y}−\mathrm{1}\right)=\mathrm{0} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{x}\left(−\mathrm{6}+\lambda\right)+{y}\left(−\mathrm{8}+\lambda\right)−\lambda=\mathrm{0} \\ $$$${centre}\:{of}\:{required}\:{cirle}\:{is} \\ $$$${comparing}\:{with}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\mathrm{2}{gx}+\mathrm{2}{fy}+{c}=\mathrm{0} \\ $$$$\mathrm{2}{gx}=\left(−\mathrm{6}+\lambda\right){x}\rightarrow\mathrm{2}{g}=−\mathrm{6}+\lambda\:\:\:\:\:\:\:{g}=\left(\frac{\lambda−\mathrm{6}}{\mathrm{2}}\right) \\ $$$$\mathrm{2}{fy}=\left(−\mathrm{8}+\lambda\right){y}\rightarrow\mathrm{2}{f}=−\mathrm{8}+\lambda\:\:\:\:\:\:\:{f}=\left(\frac{\lambda−\mathrm{8}}{\mathrm{2}}\right) \\ $$$${centre}\:{of}\:{required}\:{circle}\left(−{g},−{f}\right) \\ $$$$\left(\frac{\mathrm{6}−\lambda}{\mathrm{2}},\frac{\mathrm{8}−\lambda}{\mathrm{2}}\right)\:{which}\:{lies}\:{on}\:{x}+{y}=\mathrm{1} \\ $$$${so}\:\frac{\mathrm{6}−\lambda}{\mathrm{2}}+\frac{\mathrm{8}−\lambda}{\mathrm{2}}=\mathrm{1}\rightarrow\mathrm{7}−\lambda=\mathrm{1}\:\:\:{so}\:\lambda=\mathrm{6} \\ $$$${reqired}\:{circle} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{x}\left(−\mathrm{6}+\mathrm{6}\right)+{y}\left(−\mathrm{8}+\mathrm{6}\right)−\mathrm{6}=\mathrm{0} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{2}{y}−\mathrm{6}=\mathrm{0} \\ $$