Menu Close

If-a-continuous-function-f-R-R-satisfies-0-1-f-x-dx-0-1-xf-x-dx-1-prove-that-0-1-f-x-2-dx-4-




Question Number 120089 by ZiYangLee last updated on 29/Oct/20
If a continuous function f:R→R satisfies  ∫_0 ^1 f(x)dx=∫_0 ^1 xf(x)dx=1  prove that ∫_0 ^1 (f(x))^2 dx≥4
$$\mathrm{If}\:\mathrm{a}\:\mathrm{continuous}\:\mathrm{function}\:{f}:\mathbb{R}\rightarrow\mathbb{R}\:\mathrm{satisfies} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {f}\left({x}\right){dx}=\int_{\mathrm{0}} ^{\mathrm{1}} {xf}\left({x}\right){dx}=\mathrm{1} \\ $$$$\mathrm{prove}\:\mathrm{that}\:\int_{\mathrm{0}} ^{\mathrm{1}} \left({f}\left({x}\right)\right)^{\mathrm{2}} {dx}\geqslant\mathrm{4} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *