Menu Close

If-a-curve-y-f-x-passing-through-the-point-1-2-is-the-solution-of-differential-equation-2x-2-dy-2xy-y-2-dx-then-the-value-of-f-2-is-equal-to-




Question Number 118376 by bramlexs22 last updated on 17/Oct/20
If a curve y = f(x) passing through  the point (1,2) is the solution  of differential equation  2x^2  dy = (2xy+y^2 )dx , then the   value of f(2) is equal to?
Ifacurvey=f(x)passingthroughthepoint(1,2)isthesolutionofdifferentialequation2x2dy=(2xy+y2)dx,thenthevalueoff(2)isequalto?
Answered by benjo_mathlover last updated on 17/Oct/20
solving for differential equation  (dy/dx) = ((2xy+y^2 )/(2x^2 )). [ set y = zx ]   ⇒ x (dz/dx) + z = ((2x(zx)+z^2 x^2 )/(2x^2 ))  ⇒ x (dz/dx) + z = ((2z+z^2 )/2)  ⇒x(dz/dx) = (1/2)z^2  ; (dz/z^2 ) = (1/2) (dx/x)  ⇒−(1/z) = (1/2)ln (x)+c ; or   ⇒(x/y) = −(1/2)ln (x)−c ; substitute point(1,2)  ⇒(1/2)=−(1/2)ln (1)−c ; c = −(1/2)  thus (x/y) = −(1/2)ln (x)+(1/2)  ⇒((2x)/y)= 1−ln (x) or y = ((2x)/(1−ln (x)))  therefore f(2) = (4/(1−ln (2)))
solvingfordifferentialequationdydx=2xy+y22x2.[sety=zx]xdzdx+z=2x(zx)+z2x22x2xdzdx+z=2z+z22xdzdx=12z2;dzz2=12dxx1z=12ln(x)+c;orxy=12ln(x)c;substitutepoint(1,2)12=12ln(1)c;c=12thusxy=12ln(x)+122xy=1ln(x)ory=2x1ln(x)thereforef(2)=41ln(2)
Answered by TANMAY PANACEA last updated on 17/Oct/20
2x^2 dy−2xydx=y^2 dx  −2x(((ydx−xdy)/y^2 ))=dx  −2d((x/y))=(dx/x)  −2((x/y))=lnx+lnc  ln(xc)=((−2x)/y)  xc=e^(−((2x)/y))   1×c=e^(−((2×1)/2)) →c=e^(−1)   xe^(−1) =e^(−((2x)/y))   (lnx)+(−1)=((−2x)/y)  y=((−2x)/(−1+lnx))→f(2)=((−4)/(−1+ln2))=(4/(1−ln2))
2x2dy2xydx=y2dx2x(ydxxdyy2)=dx2d(xy)=dxx2(xy)=lnx+lncln(xc)=2xyxc=e2xy1×c=e2×12\boldsymbolc=\boldsymbole1\boldsymbolxe1=\boldsymbole2\boldsymbolx\boldsymboly(\boldsymbollnx)+(1)=2\boldsymbolx\boldsymboly\boldsymboly=2\boldsymbolx1+\boldsymbollnxf(2)=41+\boldsymbolln2=41\boldsymbolln2

Leave a Reply

Your email address will not be published. Required fields are marked *