Menu Close

If-a-function-f-R-R-satisfies-the-relation-f-x-1-f-x-1-3-f-x-for-all-x-R-then-a-period-of-f-is-A-10-B-12-C-6-D-4-




Question Number 119635 by Ar Brandon last updated on 25/Oct/20
If a function f:R→R satisfies the relation         f(x+1)+f(x−1)=(√3)f(x) for all x∈R  then a period of f is  (A) 10               (B) 12               (C) 6               (D) 4
Ifafunctionf:RRsatisfiestherelationf(x+1)+f(x1)=3f(x)forallxRthenaperiodoffis(A)10(B)12(C)6(D)4
Answered by Olaf last updated on 26/Oct/20
f(x+1)+f(x−1) = (√3)f(x)    f(x+2)+f(x) = (√3)f(x+1)  f(x+2)+f(x) = (√3)[(√3)f(x)−f(x−1)]  f(x+2) = 2f(x)−(√3)f(x−1)    f(x+3) = 2f(x+1)−(√3)f(x)  f(x+3) = 2[(√3)f(x)−f(x−1)]−(√3)f(x)  f(x+3) = (√3)f(x)−2f(x−1)    f(x+4) = (√3)f(x+1)−2f(x)  f(x+4) = (√3)[(√3)f(x)−f(x−1)]−2f(x)  f(x+4) = f(x)−(√3)f(x−1)    f(x+5) = f(x+1)−(√3)f(x)  f(x+5) = f(x+1)−[f(x+1)+f(x−1)]  f(x+5) = −f(x−1)    f(x+6) = −f(x)  ⇒ f(x+12) = −f(x+6)  f(x+12) = −[−f(x)]  f(x+12) = f(x)    Period is 12.
f(x+1)+f(x1)=3f(x)f(x+2)+f(x)=3f(x+1)f(x+2)+f(x)=3[3f(x)f(x1)]f(x+2)=2f(x)3f(x1)f(x+3)=2f(x+1)3f(x)f(x+3)=2[3f(x)f(x1)]3f(x)f(x+3)=3f(x)2f(x1)f(x+4)=3f(x+1)2f(x)f(x+4)=3[3f(x)f(x1)]2f(x)f(x+4)=f(x)3f(x1)f(x+5)=f(x+1)3f(x)f(x+5)=f(x+1)[f(x+1)+f(x1)]f(x+5)=f(x1)f(x+6)=f(x)f(x+12)=f(x+6)f(x+12)=[f(x)]f(x+12)=f(x)Periodis12.
Commented by Ar Brandon last updated on 26/Oct/20
Thank you Sir

Leave a Reply

Your email address will not be published. Required fields are marked *