Menu Close

If-A-gt-0-B-gt-0-and-A-B-pi-3-then-maximum-value-of-tanAtanB-is-




Question Number 57269 by rahul 19 last updated on 01/Apr/19
If A>0,B>0, and A+B=(π/3) , then  maximum value of tanAtanB is ?
IfA>0,B>0,andA+B=π3,thenmaximumvalueoftanAtanBis?
Commented by rahul 19 last updated on 01/Apr/19
Any short method ?
Anyshortmethod?
Commented by tanmay.chaudhury50@gmail.com last updated on 01/Apr/19
Commented by tanmay.chaudhury50@gmail.com last updated on 01/Apr/19
Commented by tanmay.chaudhury50@gmail.com last updated on 01/Apr/19
tanAtanB max when A=B=(π/6)
tanAtanBmaxwhenA=B=π6
Commented by mr W last updated on 01/Apr/19
due to symmetry tan A×tan B is  maximum or minimum when A=B=(π/6),  max.=((√3)/3)×((√3)/3)=(1/3)
duetosymmetrytanA×tanBismaximumorminimumwhenA=B=π6,max.=33×33=13
Commented by rahul 19 last updated on 01/Apr/19
thank you sir!
Answered by tanmay.chaudhury50@gmail.com last updated on 01/Apr/19
tan(A+B)=(√3)   p=tanAtanB  p=tanAtan((π/3)−A)  p=tanA×(((√3) −tanA)/(1+(√3) tanA))  p=(((√3) a−a^2 )/(1+(√3) a))  (dp/da)=(((1+(√3) a)((√3) −2a)−((√3) a−a^2 )(0+(√3) ))/((1+(√3) a)^2 ))  for max/min (dp/da)=0  (√3) −2a+3a−2(√3) a^2 −3a+(√3)a^2 =0  −(√3) a^2 −2a+(√3) =0  (√3) a^2 +2a−(√3) =0  (√3) a^2 +3a−a−(√3) =0  (√3) a(a+(√3) )−1(a+(√3) )=0  (a+(√3) )((√3) a−1)=0  a≠−(√3)     so a=(1/( (√3)))  (dp/da)=((−(√3) a^2 −2a+(√(3 )))/((1+(√3) a)^2 ))  (dp/da)>0 when a<(1/( (√3)))  (dp/da)=0 at a=(1/( (√3)))  (dp/da)<0 when a>(1/( (√3)))  so sign of (dp/da) changes from (+ve)to (−ve)  so at a=(1/( (√3)))   p is maximum    tanA=(1/( (√3)))=tan(π/6)  A=(π/6)  hence B=(π/6)  max value (tan(π/6))(tan(π/6))=(1/( (√3)))×(1/( (√3)))=(1/3)
tan(A+B)=3p=tanAtanBp=tanAtan(π3A)p=tanA×3tanA1+3tanAp=3aa21+3adpda=(1+3a)(32a)(3aa2)(0+3)(1+3a)2formax/mindpda=032a+3a23a23a+3a2=03a22a+3=03a2+2a3=03a2+3aa3=03a(a+3)1(a+3)=0(a+3)(3a1)=0a3soa=13dpda=3a22a+3(1+3a)2dpda>0whena<13dpda=0ata=13dpda<0whena>13sosignofdpdachangesfrom(+ve)to(ve)soata=13pismaximumtanA=13=tanπ6A=π6henceB=π6maxvalue(tanπ6)(tanπ6)=13×13=13
Commented by rahul 19 last updated on 01/Apr/19
thank you sir!
Answered by ajfour last updated on 01/Apr/19
tan (A+B)=((tan A+tan B)/(1−tan Atan B))=(√3)  ⇒ tan Atan B=1−((tan A+tan B)/( (√3)))  let   f(x)=tan x+tan (π/3−x)           f ′(x)=sec^2 x−sec^2 (π/3−x)          =0  ⇒   x=(π/3)−x                  ⇒ x=(π/6)          f ′′((π/6))=2sec^2 (π/6)tan (π/6)                               +2sec^2 (π/6)tan (π/6) >0           hence (tan Atan B)_(max) =(1/3) .
tan(A+B)=tanA+tanB1tanAtanB=3tanAtanB=1tanA+tanB3letf(x)=tanx+tan(π/3x)f(x)=sec2xsec2(π/3x)=0x=π3xx=π6f(π6)=2sec2π6tanπ6+2sec2π6tanπ6>0hence(tanAtanB)max=13.
Commented by rahul 19 last updated on 01/Apr/19
thank you sir!

Leave a Reply

Your email address will not be published. Required fields are marked *