Menu Close

If-a-gt-0-b-gt-0-and-the-minimum-value-of-a-sin-2-b-cosec-2-is-equal-to-maximum-value-of-a-sin-2-b-cos-2-then-a-b-is-equal-to-Answer-4-




Question Number 16179 by Tinkutara last updated on 24/Jun/17
If a > 0, b > 0 and the minimum  value of a sin^2  θ + b cosec^2  θ is equal to  maximum value of a sin^2  θ + b cos^2  θ,  then (a/b) is equal to [Answer: 4]
Ifa>0,b>0andtheminimumvalueofasin2θ+bcosec2θisequaltomaximumvalueofasin2θ+bcos2θ,thenabisequalto[Answer:4]
Answered by ajfour last updated on 24/Jun/17
let sin^2 θ=t   f(t)=at+(b/t)   is minimum when   f ′(t)=a−(b/t^2 )=0 ⇒ t_0 =(√(b/a))   f(t_0 )=2a((√(b/a)) )=2(√(ab))    g(t)=at+b(1−t) = (a−b)t+b  here i need to know if a>b or not  if a>b   maximum of g(t) is     = (a−b)(1)+b =a  since min. of f(t)=max. of g(t)     2a((√(b/a)) ) = a  or   (a/b) = 4         (a>b)  but if a<b then   max. of g(t) = (a−b)(0)+b =b                          (remember t=sin^2 θ)  then  from given condition  2a((√(b/a)) )=b  or    (√(b/a)) =2  ⇒   (a/b) = (1/4)   (a<b) .
letsin2θ=tf(t)=at+btisminimumwhenf(t)=abt2=0t0=baf(t0)=2a(ba)=2abg(t)=at+b(1t)=(ab)t+bhereineedtoknowifa>bornotifa>bmaximumofg(t)is=(ab)(1)+b=asincemin.off(t)=max.ofg(t)2a(ba)=aorab=4(a>b)butifa<bthenmax.ofg(t)=(ab)(0)+b=b(remembert=sin2θ)thenfromgivencondition2a(ba)=borba=2ab=14(a<b).
Commented by Tinkutara last updated on 24/Jun/17
Thanks Sir! I also got confused with  4 and (1/4) .
ThanksSir!Ialsogotconfusedwith4and14.

Leave a Reply

Your email address will not be published. Required fields are marked *