Menu Close

if-a-gt-1-show-k-1-a-2-1-a-k-k-1-a-2-1-a-k-2-1-




Question Number 192009 by universe last updated on 05/May/23
     if  a>1 , show       ((Σ_(k=1) ^(a^2 −1)   (√(a+(√k))))/(Σ_(k=1) ^(a^2 −1)   (√(a−(√k)))))   =   (√2)  +  1
ifa>1,showa21k=1a+ka21k=1ak=2+1
Answered by Skabetix last updated on 05/May/23
Commented by Skabetix last updated on 05/May/23
S_2 =S_1 ((√)2−1)  →S_1 =(S_2 /( (√2)−1))  →(S_1 /S_2 )=((S_2 /( (√2)−1))/(S_2 /1))=(S_2 /( (√2)−1))×(1/S_2 )=(1/( (√2)−1))=(((√2)+1)/(((√)2−1)((√)2+1)))=(√)2+1
S2=S1(21)S1=S221S1S2=S221S21=S221×1S2=121=2+1(21)(2+1)=2+1
Answered by York12 last updated on 24/Jul/23
let Σ_(k=1 ) ^(a^2 −1) (√(a+(√k) ))=s_1   and Σ_(k=1) ^(a^2 −1) (√(a−(√k)))=s_2   s_1 −s_2 =Σ_(k=1) ^(a^2 −1) [(√(((√(a+(√k)))−(√(a−(√k))))^2 ))]=Σ_(k=1) ^(a^2 −1) (√2)(√(a−(√(a^2 −k))))     → [I]  Now since Σ_(k=1) ^(a^2 −1) T_k =Σ_(k=1) ^(a^2 −1) T_([(a^2 −1)−(k−1)]) =Σ_(k=1) ^(a^2 −1) T_((a^2 −k))   let T_k =(√(a−(√k) )) → T_((a^2 −k)) =(√(a−(√(a^2 −k))))  ∴ I = Σ_(k=1) ^(a^2 −1) (√(a−(√k)))=(√2)s_2   ∴ s_1 +s_2 =(√2)s_2  → s_1 =(1+(√2))s_2  → (s_1 /s_2 )=(1+(√2)) → (That′s it )
leta21k=1a+k=s1anda21k=1ak=s2s1s2=a21k=1[(a+kak)2]=a21k=12aa2k[I]Nowsincea21k=1Tk=a21k=1T[(a21)(k1)]=a21k=1T(a2k)letTk=akT(a2k)=aa2kI=a21k=1ak=2s2s1+s2=2s2s1=(1+2)s2s1s2=(1+2)(Thatsit)

Leave a Reply

Your email address will not be published. Required fields are marked *