Menu Close

if-a-k-gt-0-k-1-5-then-prove-that-exists-i-j-1-5-such-that-0-a-j-a-i-1-a-i-a-j-2-1-




Question Number 162995 by HongKing last updated on 02/Jan/22
if  a_k  > 0  ;  k = 1,5^(−)   then prove that exists  i,j∈1,5^(−)   such that:  0 ≤ ((a_j  - a_i )/(1 + a_i a_j )) ≤ (√2) - 1
ifak>0;k=1,5thenprovethatexistsi,j1,5suchthat:0ajai1+aiaj21
Answered by mindispower last updated on 03/Jan/22
a_k =tg(β_k ),β_k ∈]0,(π/2)[,x→tg(x) bijection [0,(π/2)[→[0,∞[  α_k −a_i =((tg(β_k )−tg(β_i ))/(1+tg(β_k )tg(β_i )))=tg(β_k −β_i )  ⇔to show∃i,j such  0≤tg(β_j −β_i )≤(√2)−1  [0,(π/2)[]=∪_(k=0) ^3 [((kπ)/8),((k+1)/2)π[...(E)  if ∃ i,j such β_i =β_j  true tg(β_i −β_j )=0∈[0,(√2)−1[  suppose ∀(i,j)∈[1,5] β_i #β_j   ⇒∃(i,j),∃k∈[0,] such That β_i ,β_(j ) ∈[((kπ)/8),((k+1)/8)π[  5 number withe 4 interval ”  0≤∣β_i −β_j ∣≤(π/8)  0≤tg∣(β_j −β_i )∣≤tg((π/8))  tg((π/8))=((2sin^2 ((π/8)))/(sin(2.(π/8))))=((1−cos((π/4)))/(sin((π/4))))=(√2)−1  ⇒∃(i,j) such that0≤ ((tg(β_i )−tg(β_j ))/(1+tg(β_i )tg(β_j )))=((a_i −a_j )/(1+a_i a_j ))≤(√2)−1
ak=tg(βk),βk]0,π2[,xtg(x)bijection[0,π2[[0,[αkai=tg(βk)tg(βi)1+tg(βk)tg(βi)=tg(βkβi)toshowi,jsuch0tg(βjβi)21[0,π2[]=3k=0[kπ8,k+12π[(E)ifi,jsuchβi=βjtruetg(βiβj)=0[0,21[You can't use 'macro parameter character #' in math mode(i,j),k[0,]suchThatβi,βj[kπ8,k+18π[5numberwithe4interval0⩽∣βiβj∣⩽π80tg(βjβi)∣⩽tg(π8)tg(π8)=2sin2(π8)sin(2.π8)=1cos(π4)sin(π4)=21(i,j)suchthat0tg(βi)tg(βj)1+tg(βi)tg(βj)=aiaj1+aiaj21
Commented by HongKing last updated on 03/Jan/22
Perfect solution my dear Sir than you so much
PerfectsolutionmydearSirthanyousomuch

Leave a Reply

Your email address will not be published. Required fields are marked *