Menu Close

If-a-log-24-12-b-log-36-24-and-c-log-48-36-then-1-abc-is-equal-to-A-2ab-B-2ac-C-2bc-D-0-




Question Number 113803 by Aina Samuel Temidayo last updated on 15/Sep/20
If a=log_(24) 12, b=log_(36) 24 and  c=log_(48) 36, then 1+abc is equal to    (A) 2ab (B) 2ac (C) 2bc (D) 0
Ifa=log2412,b=log3624andc=log4836,then1+abcisequalto(A)2ab(B)2ac(C)2bc(D)0
Answered by bemath last updated on 15/Sep/20
a = ((ln 12)/(ln 24))=((ln 12)/(ln 2+ln 12)) , b=((ln 24)/(ln 36))=((ln 2+ln 12)/(ln 3+ln 12))  c=((ln 3+ln 12)/(ln 4+ln 12))  a×b×c = ((ln 12)/(ln 2+ln 12))×((ln 2+ln 12)/(ln 3+ln 12))×((ln 3+ln 12)/(ln 4+ln 12))              = ((ln 12)/(ln 4+ln 12)) = log _(48) (12)  1+abc = 1+log _(48) (12)                = log _(48) (12×48)                = ((ln 4+2.ln 12)/(ln 4+ln 12))          = ((2ln 2+2ln 12)/(ln 4+ln 12)) = 2(((ln 2+ln 12)/(ln 4+ln 12)))          = 2bc
a=ln12ln24=ln12ln2+ln12,b=ln24ln36=ln2+ln12ln3+ln12c=ln3+ln12ln4+ln12a×b×c=ln12ln2+ln12×ln2+ln12ln3+ln12×ln3+ln12ln4+ln12=ln12ln4+ln12=log48(12)1+abc=1+log48(12)=log48(12×48)=ln4+2.ln12ln4+ln12=2ln2+2ln12ln4+ln12=2(ln2+ln12ln4+ln12)=2bc
Commented by Aina Samuel Temidayo last updated on 15/Sep/20
Thanks.
Thanks.
Answered by som(math1967) last updated on 15/Sep/20
C)2bc
C)2bc
Answered by $@y@m last updated on 15/Sep/20
24^a =12 .....(A)  36^b =24 .....(B)  48^c =36 .....(C)  From (C),  (48^c )^b =36^b   48^(bc) =24  {usimg (B)  (48^(bc) )^a =24^a   48^(abc) =12  {using (A)  48^(abc) ×48=12×48  48^(1+abc) =24^2   48^(1+abc) =36^(2b)   48^(1+abc) =48^(2bc)   1+abc=2bc
24a=12..(A)36b=24..(B)48c=36..(C)From(C),(48c)b=36b48bc=24{usimg(B)(48bc)a=24a48abc=12{using(A)48abc×48=12×48481+abc=242481+abc=362b481+abc=482bc1+abc=2bc
Commented by Aina Samuel Temidayo last updated on 15/Sep/20
Nice method. Thanks.
Nicemethod.Thanks.

Leave a Reply

Your email address will not be published. Required fields are marked *