Question Number 55869 by mr W last updated on 05/Mar/19
$${if}\:\boldsymbol{{a}}_{\boldsymbol{{n}}+\mathrm{2}} =\frac{\boldsymbol{{a}}_{\boldsymbol{{n}}+\mathrm{1}} ^{\mathrm{3}} }{\boldsymbol{{a}}_{\boldsymbol{{n}}} ^{\mathrm{2}} }\:{and}\:{a}_{\mathrm{1}} =\mathrm{2},\:{a}_{\mathrm{2}} =\mathrm{4} \\ $$$${find}\:\boldsymbol{{a}}_{\boldsymbol{{n}}} =? \\ $$
Commented by Tawa1 last updated on 05/Mar/19
$$\mathrm{sir},\:\mathrm{please}\:\mathrm{check}\:\mathrm{question}\:\:\mathrm{55785}\:\:\mathrm{you}\:\mathrm{solved}.\:\mathrm{I}\:\mathrm{asked}\:\mathrm{something}\:.. \\ $$
Commented by MJS last updated on 05/Mar/19
$${a}_{{n}} =\frac{{a}_{\mathrm{2}} ^{\left(\mathrm{2}^{{n}−\mathrm{1}} −\mathrm{1}\right)} }{{a}_{\mathrm{1}} ^{\left(\mathrm{2}^{{n}−\mathrm{1}} −\mathrm{2}\right)} } \\ $$
Answered by MJS last updated on 05/Mar/19
$${a}_{{n}} =\mathrm{2}^{\left(\mathrm{2}^{{n}−\mathrm{1}} \right)} =\mathrm{2}^{\frac{\mathrm{2}^{{n}} }{\mathrm{2}}} \\ $$
Commented by mr W last updated on 05/Mar/19
$${thanks}\:{sir}! \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 05/Mar/19
$$\frac{{a}_{{n}+\mathrm{2}} }{{a}_{{n}+\mathrm{1}} }=\left(\frac{{a}_{{n}+\mathrm{1}} }{{a}_{{n}} }\right)^{\mathrm{2}} \\ $$$$\frac{{a}_{\mathrm{3}} }{{a}_{\mathrm{2}} }=\left(\frac{{a}_{\mathrm{2}} }{{a}_{\mathrm{1}} }\right)^{\mathrm{2}} =\left(\frac{\mathrm{4}}{\mathrm{2}}\right)^{\mathrm{2}} =\mathrm{4} \\ $$$$\frac{{a}_{\mathrm{2}} }{{a}_{\mathrm{1}} }=\mathrm{2}=\mathrm{2}^{\mathrm{1}} \\ $$$$\frac{{a}_{\mathrm{3}} }{{a}_{\mathrm{2}} }=\mathrm{4}=\mathrm{2}^{\mathrm{2}} \\ $$$$\frac{{a}_{\mathrm{4}} }{{a}_{\mathrm{3}} }=\left(\frac{{a}_{\mathrm{3}} }{{a}_{\mathrm{2}} }\right)^{\mathrm{2}} =\mathrm{4}^{\mathrm{2}} =\mathrm{2}^{\mathrm{4}} \\ $$$$\frac{{a}_{\mathrm{5}} }{{a}_{\mathrm{4}} }=\left(\frac{{a}_{\mathrm{4}} }{{a}_{\mathrm{3}} }\right)^{\mathrm{2}} =\mathrm{2}^{\mathrm{8}} \\ $$$$…. \\ $$$${a}_{\mathrm{1}} ={a}_{\mathrm{1}} =\mathrm{2}\rightarrow\mathrm{2}^{\mathrm{2}^{\mathrm{0}} } \\ $$$${a}_{\mathrm{2}} =\mathrm{2}^{\mathrm{1}} {a}_{\mathrm{1}} =\mathrm{4}=\mathrm{2}^{\mathrm{2}} \rightarrow\mathrm{2}^{\mathrm{2}^{\mathrm{1}} } \\ $$$${a}_{\mathrm{3}} =\mathrm{2}^{\mathrm{2}} {a}_{\mathrm{2}} =\mathrm{2}^{\mathrm{2}} ×\mathrm{2}^{\mathrm{2}} =\mathrm{2}^{\mathrm{4}} \rightarrow\mathrm{2}^{\mathrm{2}^{\mathrm{2}} } \\ $$$${a}_{\mathrm{4}} =\mathrm{2}^{\mathrm{4}} {a}_{\mathrm{3}} =\mathrm{2}^{\mathrm{4}} ×\mathrm{2}^{\mathrm{4}} =\mathrm{2}^{\mathrm{8}} \rightarrow\mathrm{2}^{\mathrm{2}^{\mathrm{3}} } \\ $$$${a}_{\mathrm{5}} =\mathrm{2}^{\mathrm{8}} ×{a}^{\mathrm{4}} =\mathrm{2}^{\mathrm{8}} ×\mathrm{2}^{\mathrm{8}} \rightarrow\mathrm{2}^{\mathrm{2}^{\mathrm{4}} } \\ $$$${so}\:{a}_{{n}} =\mathrm{2}^{\mathrm{2}^{{n}−\mathrm{1}} } \\ $$
Commented by mr W last updated on 05/Mar/19
$${very}\:{nice}\:{sir}!\:{thank}\:{you}! \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 05/Mar/19
$${thank}\:{you}\:{sir}\:{brain}\:{cell}\:{gets}\:{charged}\:{and}\:{gets}\:{activated} \\ $$$${to}\:{solve}\:{these}\:{type}\:{of}\:{problems}… \\ $$