Menu Close

If-a-n-3-a-n-1-a-n-1-and-a-0-1-a-2-2-find-a-n-




Question Number 93173 by I want to learn more last updated on 11/May/20
If     a_(n  +  3)   =  (a_(n  −  1) /a_(n  +  1) ) ,    and   a_0   =  1,   a_2   =  2  find   a_n
Ifan+3=an1an+1,anda0=1,a2=2findan
Answered by prakash jain last updated on 12/May/20
a_(n+3) =(a_(n−1) /a_(n+1) )  b_n =ln a_n   ln a_(n+3) =ln a_(n−1) −ln a_(n+1)   b_(n+3) =b_(n−1) −b_(n+1)   b_(n+3) +b_(n+1) −b_(n−1) =0  Characteristic equation  x^4 +x^2 −1=0  x^2 =((−1±(√5))/2)  x=±(√((−1±(√5))/2))  x=±(√(((√5)−1)/2)) and ±i(√(((√5)+1)/2))  b_n =c_1 ((√((√(5−1))/2)))^n +c_2 (−(√(((√5)−1)/2)))^n           +c_3 (i(√(((√5)+1)/2)))^n +c_4 (−i(√(((√5)+1)/2)))^n   b_n =(1/2^(n/2) ){(c_1 +(−1)^n c_2 )((√5)−1)^(n/2) +i(c_3 +(−1)^n c_4 )((√5)+1)^(n/2)   a_n =exp((1/2^(n/2) ){(c_1 +(−1)^n c_2 )((√5)−1)^(n/2) +i(c_3 +(−1)^n c_4 )((√5)+1)^(n/2) )  where c_(1,) c_2 ,c_3  and c_4  are arbitarary  constants.    You have only given two initial  conditions. You need 4 to  determine c_1 to c_4
an+3=an1an+1bn=lnanlnan+3=lnan1lnan+1bn+3=bn1bn+1bn+3+bn+1bn1=0Characteristicequationx4+x21=0x2=1±52x=±1±52x=±512and±i5+12bn=c1(512)n+c2(512)n+c3(i5+12)n+c4(i5+12)nbn=12n/2{(c1+(1)nc2)(51)n/2+i(c3+(1)nc4)(5+1)n/2an=exp(12n/2{(c1+(1)nc2)(51)n/2+i(c3+(1)nc4)(5+1)n/2)wherec1,c2,c3andc4arearbitararyconstants.Youhaveonlygiventwoinitialconditions.Youneed4todeterminec1toc4
Commented by prakash jain last updated on 12/May/20
exp(x)=e^x
exp(x)=ex
Commented by I want to learn more last updated on 12/May/20
Thanks sir, i appreciate
Thankssir,iappreciate

Leave a Reply

Your email address will not be published. Required fields are marked *