Menu Close

If-a-n-6-n-8-n-find-a-1991-49-




Question Number 126400 by F_Nongue last updated on 20/Dec/20
If a_n =6^n +8^n  find (a_(1991) /(49)).
Ifan=6n+8nfinda199149.
Commented by talminator2856791 last updated on 20/Dec/20
 are you wanting remainder?
areyouwantingremainder?
Commented by MJS_new last updated on 20/Dec/20
a_(1991) >10^(1798)  ⇒ (a_(1991) /(49))>10^(1796)
a1991>101798a199149>101796
Commented by MJS_new last updated on 20/Dec/20
the remainder is 42
theremainderis42
Commented by F_Nongue last updated on 20/Dec/20
yez I want the remainder
yezIwanttheremainder
Commented by MJS_new last updated on 20/Dec/20
the remainder you get by finding the periodical  remainders of (a_n /(49)). start with n=1, 2, 3, ...  until you have one full period. then find the  position of 1991 within this period
theremainderyougetbyfindingtheperiodicalremaindersofan49.startwithn=1,2,3,untilyouhaveonefullperiod.thenfindthepositionof1991withinthisperiod
Answered by floor(10²Eta[1]) last updated on 20/Dec/20
6^(1991) +8^(1991) (mod 49)  φ(49)=7^2 −7=42  6^(1991) =(6^(47) )^(42+17) ≡6^(17)   8^(1991) ≡8^(17)   a_(1991) ≡6^(17) +8^(17) (mod 49)  6^2 =36≡−13(mod 49)  6^(17) =(6^2 )^8 .6≡13^8 .6=(13^2 )^4 .6≡22^4 .6  ≡(22^2 )^2 .6≡(−6)^2 .6≡6^2 .6≡−13.6≡−78≡20(mod 49)  8^2 =64≡15(mod 49)  8^(17) ≡(8^2 )^8 .8≡15^8 .8=(15^2 )^4 .8≡(−20)^4 .8=20^4 .8  =(20^2 )^2 .8≡8^2 .8≡15.8≡22(mod 49)  a_(1991) ≡20+22≡42(mod49)
61991+81991(mod49)ϕ(49)=727=4261991=(647)42+1761781991817a1991617+817(mod49)62=3613(mod49)617=(62)8.6138.6=(132)4.6224.6(222)2.6(6)2.662.613.67820(mod49)82=6415(mod49)817(82)8.8158.8=(152)4.8(20)4.8=204.8=(202)2.882.815.822(mod49)a199120+2242(mod49)

Leave a Reply

Your email address will not be published. Required fields are marked *