Menu Close

If-a-n-a-n-1-1-for-every-positive-integer-greater-than-1-then-a-1-a-2-a-3-a-100-equals-1-5000-a-1-2-5050-a-1-3-5051-a-1-3-5052-a-2-




Question Number 25085 by Tinkutara last updated on 03/Dec/17
If a_n −a_(n−1) =1 for every positive  integer greater than 1, then a_1 +a_2 +a_3   +...a_(100)  equals  (1) 5000 . a_1   (2) 5050 . a_1   (3) 5051 . a_1   (3) 5052 . a_2
$${If}\:{a}_{{n}} −{a}_{{n}−\mathrm{1}} =\mathrm{1}\:{for}\:{every}\:{positive} \\ $$$${integer}\:{greater}\:{than}\:\mathrm{1},\:{then}\:{a}_{\mathrm{1}} +{a}_{\mathrm{2}} +{a}_{\mathrm{3}} \\ $$$$+…{a}_{\mathrm{100}} \:{equals} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{5000}\:.\:{a}_{\mathrm{1}} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{5050}\:.\:{a}_{\mathrm{1}} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{5051}\:.\:{a}_{\mathrm{1}} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{5052}\:.\:{a}_{\mathrm{2}} \\ $$
Answered by ajfour last updated on 03/Dec/17
  Σ_(r=1) ^(100) a_r =a_1 +(a_1 +1)+(a_2 +1)+....                     ...+(a_(99) +1)    =a_1 +(a_1 +1)+(a_1 +2)+(a_2 +3)+..            ....+(a_1 +99)    =100a_1 +((99×100)/2)    =100(a_1 +((99)/2)).  but if it were given that  a_n −a_(n−1) =a_1     ⇒  a_2 =2a_1 ,   a_3 =3a_1 , ....and so on  then  Σ_(r=1) ^(100) a_r  =a_1 (1+2+3+...100)              =(((100×101)/2))a_1  = 5050a_1  .  option (2) .
$$ \\ $$$$\underset{{r}=\mathrm{1}} {\overset{\mathrm{100}} {\sum}}{a}_{{r}} ={a}_{\mathrm{1}} +\left({a}_{\mathrm{1}} +\mathrm{1}\right)+\left({a}_{\mathrm{2}} +\mathrm{1}\right)+…. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:…+\left({a}_{\mathrm{99}} +\mathrm{1}\right) \\ $$$$\:\:={a}_{\mathrm{1}} +\left({a}_{\mathrm{1}} +\mathrm{1}\right)+\left({a}_{\mathrm{1}} +\mathrm{2}\right)+\left({a}_{\mathrm{2}} +\mathrm{3}\right)+.. \\ $$$$\:\:\:\:\:\:\:\:\:\:….+\left({a}_{\mathrm{1}} +\mathrm{99}\right) \\ $$$$\:\:=\mathrm{100}{a}_{\mathrm{1}} +\frac{\mathrm{99}×\mathrm{100}}{\mathrm{2}} \\ $$$$\:\:=\mathrm{100}\left({a}_{\mathrm{1}} +\frac{\mathrm{99}}{\mathrm{2}}\right). \\ $$$${but}\:{if}\:{it}\:{were}\:{given}\:{that} \\ $$$${a}_{{n}} −{a}_{{n}−\mathrm{1}} ={a}_{\mathrm{1}} \:\: \\ $$$$\Rightarrow\:\:{a}_{\mathrm{2}} =\mathrm{2}{a}_{\mathrm{1}} ,\:\:\:{a}_{\mathrm{3}} =\mathrm{3}{a}_{\mathrm{1}} ,\:….{and}\:{so}\:{on} \\ $$$${then}\:\:\underset{{r}=\mathrm{1}} {\overset{\mathrm{100}} {\sum}}{a}_{{r}} \:={a}_{\mathrm{1}} \left(\mathrm{1}+\mathrm{2}+\mathrm{3}+…\mathrm{100}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=\left(\frac{\mathrm{100}×\mathrm{101}}{\mathrm{2}}\right){a}_{\mathrm{1}} \:=\:\mathrm{5050}{a}_{\mathrm{1}} \:. \\ $$$${option}\:\left(\mathrm{2}\right)\:. \\ $$
Commented by Tinkutara last updated on 03/Dec/17
Thank you Sir!
$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{Sir}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *