Menu Close

if-a-n-is-convergent-then-prove-that-there-exists-a-subsequence-n-k-a-n-k-with-lim-k-n-k-a-n-k-0-




Question Number 63054 by jimful last updated on 28/Jun/19
if Σ∣a_n  ∣ is convergent, then  prove that there exists   a subsequence {n_k a_n_k  }  with  lim_(k→∞) n_k a_n_k  =0
$${if}\:\Sigma\mid{a}_{{n}} \:\mid\:{is}\:{convergent},\:{then} \\ $$$${prove}\:{that}\:{there}\:{exists}\: \\ $$$${a}\:{subsequence}\:\left\{{n}_{{k}} {a}_{{n}_{{k}} } \right\}\:\:{with} \\ $$$$\underset{{k}\rightarrow\infty} {\mathrm{lim}}{n}_{{k}} {a}_{{n}_{{k}} } =\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *