Menu Close

If-a-planet-is-suddenly-stopped-in-its-orbit-supposed-to-be-circular-then-it-would-fall-into-the-sun-in-a-time-T-4-2-where-T-is-the-time-period-of-revolution-Prove-this-




Question Number 27445 by Tinkutara last updated on 07/Jan/18
If a planet is suddenly stopped in its  orbit, supposed to be circular, then it  would fall into the sun in a time (T/(4(√2))),  where T is the time period of  revolution. Prove this.
Ifaplanetissuddenlystoppedinitsorbit,supposedtobecircular,thenitwouldfallintothesuninatimeT42,whereTisthetimeperiodofrevolution.Provethis.
Answered by mrW1 last updated on 07/Jan/18
Gravitation force between planet  and sun:  F=((GMm)/L^2 )  with M = mass of sun  m = mass of planet  L = distance between them  F=((mv^2 )/L)=((GMm)/L^2 )  ⇒v=(√((GM)/L))=velocity of planet in orbit  T=((2πL)/v)=2πL(√(L/(GM)))    free fall of planet into sun from  height x= L to 0:  F(x)=((GMm)/x^2 )=ma  ⇒a=((GM)/x^2 )=−v(dv/dx)  ⇒vdv=−GM (dx/x^2 )  ⇒∫_0 ^( v) vdv=−GM ∫_L ^( x) (dx/x^2 )  ⇒(1/2)v^2 =GM((1/x)−(1/L))=((GM(L−x))/(Lx))  ⇒v=(√((2GM)/L)) (√((L−x)/x))=−(dx/dt)  ⇒−(√((2GM)/L)) dt=(√(x/(L−x))) dx  ⇒−(√((2GM)/L)) ∫_0 ^( T_1 ) dt=∫_L ^( 0) (√(x/(L−x))) dx  ⇒−(√((2GM)/L)) T_1 =[−(√(x(L−x)))−L tan^(−1) (√((L−x)/x))]_L ^0 =−((Lπ)/2)  ⇒T_1 =((πL)/2)×(√(L/(2GM)))=(1/(4(√2)))×2πL (√(L/(GM)))  ⇒T_1 =(T/(4(√2)))
Gravitationforcebetweenplanetandsun:F=GMmL2withM=massofsunm=massofplanetL=distancebetweenthemF=mv2L=GMmL2v=GML=velocityofplanetinorbitT=2πLv=2πLLGMfreefallofplanetintosunfromheightx=Lto0:F(x)=GMmx2=maa=GMx2=vdvdxvdv=GMdxx20vvdv=GMLxdxx212v2=GM(1x1L)=GM(Lx)Lxv=2GMLLxx=dxdt2GMLdt=xLxdx2GML0T1dt=L0xLxdx2GMLT1=[x(Lx)Ltan1Lxx]L0=Lπ2T1=πL2×L2GM=142×2πLLGMT1=T42
Commented by Tinkutara last updated on 07/Jan/18
How do you solved the integral? As in question 27400 it is giving another answer.
Commented by mrW1 last updated on 07/Jan/18
I=∫_L ^( 0) (√(x/(L−x))) dx  =L∫_L ^( 0) (√((x/L)/(1−(x/L)))) d(x/L)  =L∫_1 ^( 0) (√(λ/(1−λ))) dλ  with λ=(x/L)    let (1/t)=(√(λ/(1−λ)))  ⇒1−λ=t^2 λ  ⇒λ=(1/(1+t^2 ))  dλ=−((2t)/((1+t^2 )^2 ))  ∫(√(λ/(1−λ))) dλ=−2∫(1/((1+t^2 )^2 ))dt  =−2[(t/(2(1+t^2 )))+(1/2)tan^(−1) t]  =−(t/(1+t^2 ))−tan^(−1) t  =−(√(λ(1−λ)))−tan^(−1) (√((1−λ)/λ))  =−(√((x/L)(1−(x/L))))−tan^(−1) (√((1−(x/L))/(x/L)))  =−(1/L)(√(x(L−x)))−tan^(−1) (√((L−x)/x))    I=∫_L ^( 0) (√(x/(L−x))) dx  =[−(√(x(L−x)))−L tan^(−1) (√((L−x)/x))]_L ^0   =−((Lπ)/2)
I=L0xLxdx=LL0xL1xLdxL=L10λ1λdλwithλ=xLlet1t=λ1λ1λ=t2λλ=11+t2dλ=2t(1+t2)2λ1λdλ=21(1+t2)2dt=2[t2(1+t2)+12tan1t]=t1+t2tan1t=λ(1λ)tan11λλ=xL(1xL)tan11xLxL=1Lx(Lx)tan1LxxI=L0xLxdx=[x(Lx)Ltan1Lxx]L0=Lπ2
Commented by Tinkutara last updated on 07/Jan/18
Commented by Tinkutara last updated on 07/Jan/18
This was book's solution. Where is mistake here then? The integral comes out negative but here it shows positive.
Commented by mrW1 last updated on 07/Jan/18
To be exact, the 3rd and 4th line in book is not correct.  in 3rd line it should be (−(dx/dt))^2  as  replacement for v^2 , since  with the definition for x−axis we  have v=−(dx/dt), on one side of 4th line  a “−” sign is missing.    sincef(x)= (√((x/(r−x)) )) is positive,  ∫_r ^( 0) f(x)dx is always negative.    I think the book doesn′t work so  cleanly.
Tobeexact,the3rdand4thlineinbookisnotcorrect.in3rdlineitshouldbe(dxdt)2asreplacementforv2,sincewiththedefinitionforxaxiswehavev=dxdt,ononesideof4thlineasignismissing.sincef(x)=xrxispositive,r0f(x)dxisalwaysnegative.Ithinkthebookdoesntworksocleanly.

Leave a Reply

Your email address will not be published. Required fields are marked *