Question Number 16542 by gourav~ last updated on 23/Jun/17
$${if}\:\frac{{a}}{\mid{Z}_{\mathrm{2}} −{Z}_{\mathrm{3}} \mid}=\frac{{b}}{\mid{Z}_{\mathrm{3}} −{Z}_{\mathrm{1}} \mid}=\frac{{c}}{\mid{Z}_{\mathrm{1}} −{Z}_{\mathrm{2}} \mid}\:\:{Then}.. \\ $$$${find}..\:\frac{{a}^{\mathrm{2}} }{{Z}_{\mathrm{2}} −{Z}_{\mathrm{3}} }\:+\:\frac{{b}^{\mathrm{2}} }{{Z}_{\mathrm{3}} −{Z}_{\mathrm{1}} }\:+\:\frac{{c}^{\mathrm{2}} }{{Z}_{\mathrm{1}} −{Z}_{\mathrm{2}} }\: \\ $$$$ \\ $$$$\left.{a}\right)\:\mathrm{0} \\ $$$$\left.{b}\right)\:\mathrm{1} \\ $$$$\left.{c}\right)\:\mathrm{2} \\ $$$$\left.{d}\right){N}.{O}.{T} \\ $$
Commented by prakash jain last updated on 23/Jun/17
$$\:\frac{{a}}{\mid{Z}_{\mathrm{2}} −{Z}_{\mathrm{3}} \mid}=\frac{{b}}{\mid{Z}_{\mathrm{3}} −{Z}_{\mathrm{1}} \mid}=\frac{{c}}{\mid{Z}_{\mathrm{1}} −{Z}_{\mathrm{2}} \mid}\:={k} \\ $$$${a}={k}\mid{Z}_{\mathrm{2}} −{Z}_{\mathrm{3}} \mid \\ $$$${a}^{\mathrm{2}} ={k}^{\mathrm{2}} \left(\mid{Z}_{\mathrm{2}} −{Z}_{\mathrm{3}} \mid\right)^{\mathrm{2}} ={k}^{\mathrm{2}} \left({Z}_{\mathrm{2}} −{Z}_{\mathrm{3}} \right)\left(\overset{−} {{Z}}_{\mathrm{2}} −\overset{−} {{Z}}_{\mathrm{3}} \right) \\ $$$$\frac{{a}^{\mathrm{2}} }{{Z}_{\mathrm{2}} −{Z}_{\mathrm{3}} }={k}^{\mathrm{2}} \left(\overset{−} {{Z}}_{\mathrm{2}} −\overset{−} {{Z}}_{\mathrm{3}} \right) \\ $$$${ans}\:\mathrm{0}. \\ $$