Question Number 186864 by mathlove last updated on 11/Feb/23
$${if}\:\:{AB},{BA}\:{and}\:{BB}\:\:{three}\:\:{tow}\:{digits}\:{natural} \\ $$$${numbers}\:{if}\:\:\frac{\left({AB}+{BA}\right)}{{BB}}=\mathrm{4} \\ $$$${then}\:{find}\:{the}\:{maximum}\:{volue}\:{of} \\ $$$$\left({A}+{B}\right)=? \\ $$
Answered by mr W last updated on 11/Feb/23
$$\frac{\left({AB}+{BA}\right)}{{BB}}=\frac{\mathrm{11}\left({a}+{b}\right)}{\mathrm{11}{b}}=\frac{{a}+{b}}{{b}}=\mathrm{4} \\ $$$${a}=\mathrm{3}{b} \\ $$$${b}_{{max}} =\mathrm{3} \\ $$$${a}_{{max}} =\mathrm{9} \\ $$$$\Rightarrow\left({a}+{b}\right)_{{max}} =\mathrm{12} \\ $$
Commented by mathlove last updated on 11/Feb/23
$${how}\:{is}\:{BA}={BB}\:\:? \\ $$
Commented by mr W last updated on 11/Feb/23
$${who}\:{said}\:{BA}={BB}? \\ $$
Commented by mathlove last updated on 11/Feb/23
$${you}\:{said}\:\:{BA}={b}\:\:{and}\:\:{BB}={b} \\ $$
Commented by mathlove last updated on 11/Feb/23
$${pleasi}\:{alittelmore}\:{describ}\:{you}\:{solution}\: \\ $$
Commented by mr W last updated on 11/Feb/23
$${i}\:{didn}'{t}\:{say}\:{BA}={b},\:{BB}={b}. \\ $$$${say}\:{the}\:{two}\:{digits}\:{are}\:{a}\:{and}\:{b}. \\ $$$$\left({i}\:{prefer}\:{using}\:{lower}\:{case},\:{a}={A},\right. \\ $$$$\left.{b}={B}\right) \\ $$$${AB}=\underline{{ab}}=\mathrm{10}{a}+{b} \\ $$$${BA}=\underline{{ba}}=\mathrm{10}{b}+{a} \\ $$$${AB}+{BA}=\mathrm{10}{a}+{b}+\mathrm{10}{b}+{a}=\mathrm{11}\left({a}+{b}\right) \\ $$$${BB}=\underline{{bb}}=\mathrm{10}{b}+{b}=\mathrm{11}{b} \\ $$$$\frac{{AB}+{BA}}{{BB}}=\frac{\mathrm{11}\left({a}+{b}\right)}{\mathrm{11}{b}}=\frac{{a}+{b}}{{b}}=\mathrm{4} \\ $$$$\Rightarrow{a}=\mathrm{3}{b} \\ $$$${since}\:{a}\:{is}\:{a}\:{digit},\:{it}\:{can}\:{be}\:{at}\:{most}\:\mathrm{9}, \\ $$$${therefore}\:{b}\:{is}\:{at}\:{most}\:\mathrm{3},\:{a}\:{at}\:{most}\:\mathrm{9}. \\ $$$${b}_{{max}} =\mathrm{3},\:{a}_{{max}} =\mathrm{9}. \\ $$
Commented by mathlove last updated on 12/Feb/23
$${thanks}\:{mr}\:{now}\:{understand} \\ $$
Answered by manxsol last updated on 12/Feb/23
$$ \\ $$$${AB}=\mathrm{10}{A}+{B} \\ $$$${BA}=\mathrm{10}{B}+{A} \\ $$$${BB}=\mathrm{10}{B}+{B}=\mathrm{11}{B} \\ $$$$\frac{{AB}+{BA}}{{BB}}=\frac{\mathrm{10}{A}+{B}+\mathrm{10}{B}+{A}}{\mathrm{11}{B}} \\ $$$$\frac{\mathrm{11}{A}+\mathrm{11}{Bm}}{\mathrm{11}{B}}=\mathrm{4} \\ $$$$\frac{{A}}{{B}}+\mathrm{1}=\mathrm{4} \\ $$$$\frac{{A}}{{B}}=\mathrm{3} \\ $$$${A}=\mathrm{9}\:{max} \\ $$$${B}=\mathrm{3}\:{max} \\ $$$${A}+{B}=\mathrm{12} \\ $$$${convention} \\ $$$${number}\:{two}\:{cifras} \\ $$$$\overline {{ab}}=\mathrm{10}{a}+{b} \\ $$$${how}\:{script} \\ $$$${ab}\:\:\:\left[{select}\right]\:\left[\leftarrow\right]\:\left[\leftarrow\right]\left[\overset{\Box} {\Box}\right]\left[−\right] \\ $$$$\overline {{ab}} \\ $$