Menu Close

If-acosh-x-bsinh-x-c-show-that-x-ln-c-c-2-b-2-a-2-a-b-




Question Number 178415 by Spillover last updated on 16/Oct/22
If acosh x+bsinh x=c   show that.  x=ln [((c±(√(c^2 +b^2 −a^2 )))/(a+b))]
Ifacoshx+bsinhx=cshowthat.x=ln[c±c2+b2a2a+b]
Answered by haladu last updated on 16/Oct/22
     acosh x + b sinh x  =  C          cosh (x) = ((e^x  + e^(−x)  )/2)      sinh (x) = ((e^x  −e^(−x) )/2)            a { ((e^x + e^(−x) )/2) } +b { ((e^x  −e^(−x) )/2) }  = c          mutiply both sides by  e^x            (a/2) {  (e^x )^2  +1 } +(b/2) { (e^x )^2  −1 }  = ce^x             (e^x )^2  (((a+b)/2))  + ((a−b)/2)   =  ce^x              (e^x )^2  (((a +b)/2) ) − ce^x   +  ((a−b)/2)  =0         mutiply both  sides by   (2/(a+b))       ⇒  ( e^(x )   )^2   − ((2c)/(a+b)) (e^x  )  +  ((a−b)/(a+b))  =0        ⇒  ( e^x  )^2  +2 ( −(c/(a +b)) )(e^x ) = ((b −a)/(a +b))          ⇒    ( e^x   −(c/(a +b)) )^2   =  ((b −a)/(a +b)) + (c^2 /((a+b)^2 ))                e^x   −(c/(a +b))   =   (√( (((b−a)(b+a) +c^2 )/((a+b)^2 ))))           ⇒  e^x     =    ((−c± (√( b^2  −a^2  +c^2 )))/((a +b)))          ⇒  x   = ln   {  ((−c ± (√( b^2  + c^2  −a^2 )))/(a +b))  }
acoshx+bsinhx=Ccosh(x)=ex+ex2sinh(x)=exex2a{ex+ex2}+b{exex2}=cmutiplybothsidesbyexa2{(ex)2+1}+b2{(ex)21}=cex(ex)2(a+b2)+ab2=cex(ex)2(a+b2)cex+ab2=0mutiplybothsidesby2a+b(ex)22ca+b(ex)+aba+b=0(ex)2+2(ca+b)(ex)=baa+b(exca+b)2=baa+b+c2(a+b)2exca+b=(ba)(b+a)+c2(a+b)2ex=c±b2a2+c2(a+b)x=ln{c±b2+c2a2a+b}
Commented by Spillover last updated on 16/Oct/22
thank you
thankyou
Commented by haladu last updated on 16/Oct/22
     You are wellcome
Youarewellcome
Answered by CElcedricjunior last updated on 16/Oct/22
on acoshx+bsinhx=c  =>acoshx+bsinhx=a(((e^x +e^(−x) )/2))+b(((e^x −e^(−x) )/2))                         =                        =>(a+b)e^(2x) +(a−b)−2ce^x =0  =>Δ=4c^2 −4(a^2 −b^2 )  supposons que 𝚫>0 ie c^2 >a^2 −b^2 =>𝚫=2(√(c^2 +b^2 −a^2 ))  =>e^x =((c∓(√(c^2 +b^2 −a^2 )))/(a+b))  =>x=ln∣((c∓(√(c^2 +b^2 −c)))/(a+b))∣     ............le celebre cedric junior.......
onacoshx+bsinhx=c=>acoshx+bsinhx=a(ex+ex2)+b(exex2)==>(a+b)e2x+(ab)2cex=0=>Δ=4c24(a2b2)supposonsqueΔ>0iec2>a2b2=>Δ=2c2+b2a2=>ex=cc2+b2a2a+b=>x=lncc2+b2ca+blecelebrecedricjunior.
Commented by Spillover last updated on 16/Oct/22
thanks
thanks

Leave a Reply

Your email address will not be published. Required fields are marked *