Menu Close

If-and-are-the-roots-of-equation-t-1-t-1-t-t-13-6-Find-2-3-




Question Number 159188 by cortano last updated on 14/Nov/21
 If α and β are the roots of  equation (√(t/(1−t))) + (√((1−t)/t)) = ((13)/6) .  Find 2α+3β .
Ifαandβaretherootsofequationt1t+1tt=136.Find2α+3β.
Commented by Rasheed.Sindhi last updated on 14/Nov/21
Do you mean  (√(t/(1−t))) + (√((1−t)/t)) = ((13)/6)  because the given equation leads  to linear equation which has single  root α (say) only.
Doyoumeant1t+1tt=136becausethegivenequationleadstolinearequationwhichhassinglerootα(say)only.
Commented by cortano last updated on 14/Nov/21
yes. sorry typo
yes.sorrytypo
Answered by Rasheed.Sindhi last updated on 14/Nov/21
(√(t/(1−t))) + (√((1−t)/t)) = ((13)/6)   ((t+(1−t))/( (√(t(1−t)))))=((13)/6)  (1/(t(1−t)))=((169)/(36))  169t−169t^2 =36  169t^2 −169t+36=0  t=(9/(13)),(4/(13))  2α+3β=2((9/(13)))+3((4/(13))),2((4/(13)))+3((9/(13)))                   =((30)/(13)),((35)/(13))
t1t+1tt=136t+(1t)t(1t)=1361t(1t)=16936169t169t2=36169t2169t+36=0t=913,4132α+3β=2(913)+3(413),2(413)+3(913)=3013,3513
Answered by mr W last updated on 14/Nov/21
x=(√(t/(1−t)))  x+(1/x)=((13)/6)  x^2 −((13)/6)x+1=0  x_1 x_2 =1   ⇒(√((t_1 /(1−t_1 ))×(t_2 /(1−t_2 ))))=1  ⇒(√((α/(1−α))×(β/(1−β))))=1  ⇒αβ=1−(α+β)+αβ  ⇒α+β=1  x_1 +x_2 =((13)/6)  ⇒(√(t_1 /(1−t_1 )))+(√(t_2 /(1−t_2 )))=((13)/6)  ⇒(√(α/(1−α)))+(√(β/(1−β)))=((13)/6)  ⇒(√(α/β))+(√(β/α))=((13)/6)  ⇒(α/β)+(β/α)=((97)/(36))  ⇒((α^2 +β^2 )/(αβ))=((97)/(36))  ⇒((1−2αβ)/(αβ))=((97)/(36))  ⇒169αβ=36  ⇒αβ=((36)/(169))  α,β are roots of z^2 −z+((36)/(169))=0  α,β=z=(1/2)(1±(5/(13)))=(9/(13)), (4/(13))    2α+3β=2(α+β)+β=2+β  =2+(9/(13))=((35)/(13)) or 2+(4/(13))=((30)/(13))
x=t1tx+1x=136x2136x+1=0x1x2=1t11t1×t21t2=1α1α×β1β=1αβ=1(α+β)+αβα+β=1x1+x2=136t11t1+t21t2=136α1α+β1β=136αβ+βα=136αβ+βα=9736α2+β2αβ=973612αβαβ=9736169αβ=36αβ=36169α,βarerootsofz2z+36169=0α,β=z=12(1±513)=913,4132α+3β=2(α+β)+β=2+β=2+913=3513or2+413=3013
Commented by Rasheed.Sindhi last updated on 14/Nov/21
Sir did you assume:   (√(t/(1−t))) + (√((1−t)/t)) = ((13)/6)  ?
Sirdidyouassume:t1t+1tt=136?
Commented by mr W last updated on 14/Nov/21
yes. otherwise non−sense.
yes.otherwisenonsense.
Commented by Rasheed.Sindhi last updated on 14/Nov/21
Your way is tricky one  sir!  Anyway my ways also lead to Rome.:)  Regardless of delay, we′re at last  together in Rome! :)
Yourwayistrickyonesir!AnywaymywaysalsoleadtoRome.:)Regardlessofdelay,wereatlasttogetherinRome!:)
Answered by Rasheed.Sindhi last updated on 14/Nov/21
 (√(t/(1−t))) _(y) + (√((1−t)/t)) = ((13)/6)  y+(1/y)=((13)/6)  6y^2 −13y+6=0  (3y−2)(2y−3)=0  y=(2/3) ∨ y=(3/2)  (√(t/(1−t)))=(2/3) ∨ (√(t/(1−t)))=(3/2)       (t/(1−t))=(4/9) ∨ (t/(1−t))=(9/4)  9t=4−4t ∨ 4t=9−9t  t=(4/(13)) ∨ t=(9/(13))  {α,β}={(4/(13)),(9/(13))}  2α+3β=2((4/(13)))+3((9/(13))) , 2((9/(13)))+3((4/(13)))       =((35)/(13)),((30)/(13))
t1ty+1tt=136y+1y=1366y213y+6=0(3y2)(2y3)=0y=23y=32t1t=23t1t=32t1t=49t1t=949t=44t4t=99tt=413t=913{α,β}={413,913}2α+3β=2(413)+3(913),2(913)+3(413)=3513,3013

Leave a Reply

Your email address will not be published. Required fields are marked *