Question Number 159188 by cortano last updated on 14/Nov/21
$$\:{If}\:\alpha\:{and}\:\beta\:{are}\:{the}\:{roots}\:{of} \\ $$$${equation}\:\sqrt{\frac{{t}}{\mathrm{1}−{t}}}\:+\:\sqrt{\frac{\mathrm{1}−{t}}{{t}}}\:=\:\frac{\mathrm{13}}{\mathrm{6}}\:. \\ $$$${Find}\:\mathrm{2}\alpha+\mathrm{3}\beta\:. \\ $$
Commented by Rasheed.Sindhi last updated on 14/Nov/21
$${Do}\:{you}\:{mean}\:\:\sqrt{\frac{{t}}{\mathrm{1}−{t}}}\:+\:\sqrt{\frac{\mathrm{1}−{t}}{{t}}}\:=\:\frac{\mathrm{13}}{\mathrm{6}} \\ $$$${because}\:{the}\:{given}\:{equation}\:{leads} \\ $$$${to}\:{linear}\:{equation}\:{which}\:{has}\:{single} \\ $$$${root}\:\alpha\:\left({say}\right)\:{only}. \\ $$
Commented by cortano last updated on 14/Nov/21
$${yes}.\:{sorry}\:{typo} \\ $$
Answered by Rasheed.Sindhi last updated on 14/Nov/21
$$\sqrt{\frac{{t}}{\mathrm{1}−{t}}}\:+\:\sqrt{\frac{\mathrm{1}−{t}}{{t}}}\:=\:\frac{\mathrm{13}}{\mathrm{6}}\: \\ $$$$\frac{{t}+\left(\mathrm{1}−{t}\right)}{\:\sqrt{{t}\left(\mathrm{1}−{t}\right)}}=\frac{\mathrm{13}}{\mathrm{6}} \\ $$$$\frac{\mathrm{1}}{{t}\left(\mathrm{1}−{t}\right)}=\frac{\mathrm{169}}{\mathrm{36}} \\ $$$$\mathrm{169}{t}−\mathrm{169}{t}^{\mathrm{2}} =\mathrm{36} \\ $$$$\mathrm{169}{t}^{\mathrm{2}} −\mathrm{169}{t}+\mathrm{36}=\mathrm{0} \\ $$$${t}=\frac{\mathrm{9}}{\mathrm{13}},\frac{\mathrm{4}}{\mathrm{13}} \\ $$$$\mathrm{2}\alpha+\mathrm{3}\beta=\mathrm{2}\left(\frac{\mathrm{9}}{\mathrm{13}}\right)+\mathrm{3}\left(\frac{\mathrm{4}}{\mathrm{13}}\right),\mathrm{2}\left(\frac{\mathrm{4}}{\mathrm{13}}\right)+\mathrm{3}\left(\frac{\mathrm{9}}{\mathrm{13}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{30}}{\mathrm{13}},\frac{\mathrm{35}}{\mathrm{13}} \\ $$
Answered by mr W last updated on 14/Nov/21
$${x}=\sqrt{\frac{{t}}{\mathrm{1}−{t}}} \\ $$$${x}+\frac{\mathrm{1}}{{x}}=\frac{\mathrm{13}}{\mathrm{6}} \\ $$$${x}^{\mathrm{2}} −\frac{\mathrm{13}}{\mathrm{6}}{x}+\mathrm{1}=\mathrm{0} \\ $$$${x}_{\mathrm{1}} {x}_{\mathrm{2}} =\mathrm{1}\: \\ $$$$\Rightarrow\sqrt{\frac{{t}_{\mathrm{1}} }{\mathrm{1}−{t}_{\mathrm{1}} }×\frac{{t}_{\mathrm{2}} }{\mathrm{1}−{t}_{\mathrm{2}} }}=\mathrm{1} \\ $$$$\Rightarrow\sqrt{\frac{\alpha}{\mathrm{1}−\alpha}×\frac{\beta}{\mathrm{1}−\beta}}=\mathrm{1} \\ $$$$\Rightarrow\alpha\beta=\mathrm{1}−\left(\alpha+\beta\right)+\alpha\beta \\ $$$$\Rightarrow\alpha+\beta=\mathrm{1} \\ $$$${x}_{\mathrm{1}} +{x}_{\mathrm{2}} =\frac{\mathrm{13}}{\mathrm{6}} \\ $$$$\Rightarrow\sqrt{\frac{{t}_{\mathrm{1}} }{\mathrm{1}−{t}_{\mathrm{1}} }}+\sqrt{\frac{{t}_{\mathrm{2}} }{\mathrm{1}−{t}_{\mathrm{2}} }}=\frac{\mathrm{13}}{\mathrm{6}} \\ $$$$\Rightarrow\sqrt{\frac{\alpha}{\mathrm{1}−\alpha}}+\sqrt{\frac{\beta}{\mathrm{1}−\beta}}=\frac{\mathrm{13}}{\mathrm{6}} \\ $$$$\Rightarrow\sqrt{\frac{\alpha}{\beta}}+\sqrt{\frac{\beta}{\alpha}}=\frac{\mathrm{13}}{\mathrm{6}} \\ $$$$\Rightarrow\frac{\alpha}{\beta}+\frac{\beta}{\alpha}=\frac{\mathrm{97}}{\mathrm{36}} \\ $$$$\Rightarrow\frac{\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} }{\alpha\beta}=\frac{\mathrm{97}}{\mathrm{36}} \\ $$$$\Rightarrow\frac{\mathrm{1}−\mathrm{2}\alpha\beta}{\alpha\beta}=\frac{\mathrm{97}}{\mathrm{36}} \\ $$$$\Rightarrow\mathrm{169}\alpha\beta=\mathrm{36} \\ $$$$\Rightarrow\alpha\beta=\frac{\mathrm{36}}{\mathrm{169}} \\ $$$$\alpha,\beta\:{are}\:{roots}\:{of}\:{z}^{\mathrm{2}} −{z}+\frac{\mathrm{36}}{\mathrm{169}}=\mathrm{0} \\ $$$$\alpha,\beta={z}=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}\pm\frac{\mathrm{5}}{\mathrm{13}}\right)=\frac{\mathrm{9}}{\mathrm{13}},\:\frac{\mathrm{4}}{\mathrm{13}} \\ $$$$ \\ $$$$\mathrm{2}\alpha+\mathrm{3}\beta=\mathrm{2}\left(\alpha+\beta\right)+\beta=\mathrm{2}+\beta \\ $$$$=\mathrm{2}+\frac{\mathrm{9}}{\mathrm{13}}=\frac{\mathrm{35}}{\mathrm{13}}\:{or}\:\mathrm{2}+\frac{\mathrm{4}}{\mathrm{13}}=\frac{\mathrm{30}}{\mathrm{13}} \\ $$
Commented by Rasheed.Sindhi last updated on 14/Nov/21
$$\mathcal{S}{ir}\:{did}\:{you}\:{assume}: \\ $$$$\:\sqrt{\frac{{t}}{\mathrm{1}−{t}}}\:+\:\sqrt{\frac{\mathrm{1}−{t}}{{t}}}\:=\:\frac{\mathrm{13}}{\mathrm{6}}\:\:? \\ $$
Commented by mr W last updated on 14/Nov/21
$${yes}.\:{otherwise}\:{non}−{sense}. \\ $$
Commented by Rasheed.Sindhi last updated on 14/Nov/21
$$\mathrm{Your}\:\mathrm{way}\:\mathrm{is}\:\mathrm{tricky}\:\mathrm{one}\:\:\mathrm{sir}! \\ $$$$\left.{Anyway}\:{my}\:{ways}\:{also}\:{lead}\:{to}\:{Rome}.:\right) \\ $$$${Regardless}\:{of}\:{delay},\:{we}'{re}\:{at}\:{last} \\ $$$$\left.{together}\:{in}\:{Rome}!\::\right) \\ $$
Answered by Rasheed.Sindhi last updated on 14/Nov/21
$$\:\underset{{y}} {\underbrace{\sqrt{\frac{{t}}{\mathrm{1}−{t}}}\:}}+\:\sqrt{\frac{\mathrm{1}−{t}}{{t}}}\:=\:\frac{\mathrm{13}}{\mathrm{6}} \\ $$$${y}+\frac{\mathrm{1}}{{y}}=\frac{\mathrm{13}}{\mathrm{6}} \\ $$$$\mathrm{6}{y}^{\mathrm{2}} −\mathrm{13}{y}+\mathrm{6}=\mathrm{0} \\ $$$$\left(\mathrm{3}{y}−\mathrm{2}\right)\left(\mathrm{2}{y}−\mathrm{3}\right)=\mathrm{0} \\ $$$${y}=\frac{\mathrm{2}}{\mathrm{3}}\:\vee\:{y}=\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\sqrt{\frac{{t}}{\mathrm{1}−{t}}}=\frac{\mathrm{2}}{\mathrm{3}}\:\vee\:\sqrt{\frac{{t}}{\mathrm{1}−{t}}}=\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\:\:\:\:\:\frac{{t}}{\mathrm{1}−{t}}=\frac{\mathrm{4}}{\mathrm{9}}\:\vee\:\frac{{t}}{\mathrm{1}−{t}}=\frac{\mathrm{9}}{\mathrm{4}} \\ $$$$\mathrm{9}{t}=\mathrm{4}−\mathrm{4}{t}\:\vee\:\mathrm{4}{t}=\mathrm{9}−\mathrm{9}{t} \\ $$$${t}=\frac{\mathrm{4}}{\mathrm{13}}\:\vee\:{t}=\frac{\mathrm{9}}{\mathrm{13}} \\ $$$$\left\{\alpha,\beta\right\}=\left\{\frac{\mathrm{4}}{\mathrm{13}},\frac{\mathrm{9}}{\mathrm{13}}\right\} \\ $$$$\mathrm{2}\alpha+\mathrm{3}\beta=\mathrm{2}\left(\frac{\mathrm{4}}{\mathrm{13}}\right)+\mathrm{3}\left(\frac{\mathrm{9}}{\mathrm{13}}\right)\:,\:\mathrm{2}\left(\frac{\mathrm{9}}{\mathrm{13}}\right)+\mathrm{3}\left(\frac{\mathrm{4}}{\mathrm{13}}\right) \\ $$$$\:\:\:\:\:=\frac{\mathrm{35}}{\mathrm{13}},\frac{\mathrm{30}}{\mathrm{13}} \\ $$