Menu Close

If-and-are-the-roots-of-equation-x-2-px-q-0-and-2-2-are-roots-of-the-equation-x-2-rx-s-0-show-that-the-equation-x-2-4qx-2q-2-r-0-has-real-roots-




Question Number 19945 by Tinkutara last updated on 18/Aug/17
If α and β are the roots of equation  x^2  + px + q = 0 and α^2 , β^2  are roots of  the equation x^2  − rx + s = 0, show  that the equation x^2  − 4qx + 2q^2  − r = 0  has real roots.
Ifαandβaretherootsofequationx2+px+q=0andα2,β2arerootsoftheequationx2rx+s=0,showthattheequationx24qx+2q2r=0hasrealroots.
Answered by Rasheed.Sindhi last updated on 19/Aug/17
x^2 +px+q=0, roots:α,β (given)  x^2 −rx+s=0, roots:α^2 ,β^2 (given)  x^2 −4qx+2q^2 −r=0,roots are real.(to be proved)  −−−−−−−−−−−  α+β=−p ,αβ=q  α^2 +β^2 =r,α^2 β^2 =s=q^2   x^2 −4qx+2q^2 −r=0        ⇒x^2 −4(αβ)x+2(αβ)^2 −(α^2 +β^2 )=0    x=((4αβ±(√(16α^2 β^2 −4(1)(2(αβ)^2 −(α^2 +β^2 )))))/2)    x=((4αβ±2(√(4α^2 β^2 −2(αβ)^2 +(α^2 +β^2 ))))/2)    =2αβ±(√(4α^2 β^2 −2α^2 β^2 +α^2 +β^2 ))    =2αβ±(√(2α^2 β^2 +α^2 +β^2 ))  α^2 ,β^2 ≥0⇒2α^2 β^2 +α^2 +β^2 ≥0  Hence the roots are real.
x2+px+q=0,roots:α,β(given)x2rx+s=0,roots:α2,β2(given)x24qx+2q2r=0,rootsarereal.(tobeproved)α+β=p,αβ=qα2+β2=r,α2β2=s=q2x24qx+2q2r=0x24(αβ)x+2(αβ)2(α2+β2)=0x=4αβ±16α2β24(1)(2(αβ)2(α2+β2))2x=4αβ±24α2β22(αβ)2+(α2+β2)2=2αβ±4α2β22α2β2+α2+β2=2αβ±2α2β2+α2+β2α2,β202α2β2+α2+β20Hencetherootsarereal.
Commented by Tinkutara last updated on 19/Aug/17
Thank you.
Thankyou.

Leave a Reply

Your email address will not be published. Required fields are marked *