Menu Close

if-and-are-the-roots-of-the-equation-3x-2-x-2-4-0-find-p-is-are-the-roots-of-x-2-px-7-0-




Question Number 34184 by Rio Mike last updated on 02/May/18
 if α and β are the roots of the equation  3x^2 + (x/2) − 4= 0 find p is α−β are  the roots of  x^2 −px + 7 =0
ifαandβaretherootsoftheequation3x2+x24=0findpisαβaretherootsofx2px+7=0
Commented by candre last updated on 02/May/18
3x^2 +(x/2)−4=0  6x^2 +x−8=0  Δ=1^2 −4×6×−8=1+6×4×8=1+12×4×4  =1+24×2×4=1+48×2×2=1+96×2  =1+192=193  x=((−1±(√(193)))/6)  x_1 =−((1+(√(193)))/6);x_2 =((−1+(√(193)))/6)  x_1 +x_2 =−(1/3)  ∣x_1 −x_2 ∣=((√(193))/3)
3x2+x24=06x2+x8=0Δ=124×6×8=1+6×4×8=1+12×4×4=1+24×2×4=1+48×2×2=1+96×2=1+192=193x=1±1936x1=1+1936;x2=1+1936x1+x2=13x1x2∣=1933
Answered by Joel578 last updated on 02/May/18
3x^2  + (1/2)x − 4 = 0  α − β =  ∣((√D)/a)∣,    where D is discriminant                =  ∣((√((193)/4))/3)∣ =  ((√(193))/6)    x = ((√(193))/6) is one of the root from equation x^2  − px + 7 = 0  Let the other root is a  (x − ((√(193))/6))(x − a) = x^2  − px + 7 = 0  x^2  − (a + ((√(193))/6))x + ((a(√(193)))/6) = x^2  − px + 7 = 0  → ((a(√(193)))/6) = 7 → a = ((42)/( (√(193))))  → p = ((42)/( (√(193)))) + ((√(193))/6)
3x2+12x4=0αβ=Da,whereDisdiscriminant=19343=1936x=1936isoneoftherootfromequationx2px+7=0Lettheotherrootisa(x1936)(xa)=x2px+7=0x2(a+1936)x+a1936=x2px+7=0a1936=7a=42193p=42193+1936

Leave a Reply

Your email address will not be published. Required fields are marked *