Menu Close

If-and-are-the-roots-of-the-quadratic-equation-x-2-10x-2-0-and-gt-find-i-1-1-ii-3-3-




Question Number 116138 by harckinwunmy last updated on 01/Oct/20
If  α and β are the roots of   the quadratic equation   x^2 −10x+2=0 and α >β, find:  (i) (1/β)−(1/α)  (ii)α^3 −β^3
Ifαandβaretherootsofthequadraticequationx210x+2=0andα>β,find:(i)1β1α(ii)α3β3
Commented by PRITHWISH SEN 2 last updated on 01/Oct/20
putting  y=(1/x)  2y^2 −10y+1=0  diff. of root  (1/β)−(1/α) = ((√D)/a)=((√(92))/2)
puttingy=1x2y210y+1=0diff.ofroot1β1α=Da=922
Answered by bemath last updated on 01/Oct/20
(i) (1/β)−(1/α)=((α−β)/(αβ)) = ((√(100−4.1.2))/2)      =((√(92))/2)
(i)1β1α=αβαβ=1004.1.22=922
Answered by Dwaipayan Shikari last updated on 01/Oct/20
x^2 −10x+2=0  α^3 −β^3 =(α−β)(α^2 +αβ+β^2 )=(√(92))((α+β)^2 −αβ)=2(√(23)) (100−2)=196(√(23))  α+β=10  αβ=2  α−β=(√(100−8))=(√(92))
x210x+2=0α3β3=(αβ)(α2+αβ+β2)=92((α+β)2αβ)=223(1002)=19623α+β=10αβ=2αβ=1008=92
Answered by Rio Michael last updated on 01/Oct/20
x^2 −10x + 2 = 0   α + β = 10 and αβ = 2  (i) (1/β)−(1/α) = ((α−β)/(αβ))  but α−β = (√((α+β)^2 −4αβ)) = (√(100−8)) = (√(92))  ⇒ (1/β)−(1/α) = ((√(92))/2)  (ii) α^3 −β^3  = (α−β)(α^2  + αβ + β^2 )                          = (α−β)[(α+β)^2 −2αβ  + αβ]                          = (√(92))( 100 − 2) = 98(√(92))   ⇒ α^3 −β^3  = 98(√(92))
x210x+2=0α+β=10andαβ=2(i)1β1α=αβαβbutαβ=(α+β)24αβ=1008=921β1α=922(ii)α3β3=(αβ)(α2+αβ+β2)=(αβ)[(α+β)22αβ+αβ]=92(1002)=9892α3β3=9892

Leave a Reply

Your email address will not be published. Required fields are marked *