Menu Close

If-and-are-the-roots-of-x-3-px-q-0-find-4-




Question Number 192186 by Tawa11 last updated on 11/May/23
If  α, β  and γ are the roots of   x^3   +  px  +  q  =  0,    find   Σα^4 .
Ifα,βandγaretherootsofx3+px+q=0,findΣα4.
Answered by BaliramKumar last updated on 10/May/23
2p^2
2p2
Commented by Tawa11 last updated on 10/May/23
Please workings sir?
Pleaseworkingssir?
Answered by manxsol last updated on 11/May/23
α+β+γ=0  αβ+αγ+βγ=p  αβγ=−q  α^4 +pα^2 +qα=0  β^4 +pβ^2 +qβ=0  γ^4 +pγ^2 +qγ=0  α^4 +β^4 +γ^4 +p(α^2 +β^2 +γ^2 )+q(α+β+γ=0  (α+β+γ)^2 =α^2 +β^2 +γ^2 +2(αβ+αγ+βγ)=0   (0)^2 =α^2 +β^2 +γ^2 +2(p)  −2p=α^2 +β^2 +γ^2   α^4 +β^4 +γ^4 +p(−2p)+q(0)=0  α^4 +β^4 +γ^4 =2p^2
α+β+γ=0αβ+αγ+βγ=pαβγ=qα4+pα2+qα=0β4+pβ2+qβ=0γ4+pγ2+qγ=0α4+β4+γ4+p(α2+β2+γ2)+q(α+β+γ=0(α+β+γ)2=α2+β2+γ2+2(αβ+αγ+βγ)=0(0)2=α2+β2+γ2+2(p)2p=α2+β2+γ2α4+β4+γ4+p(2p)+q(0)=0α4+β4+γ4=2p2
Commented by Tawa11 last updated on 11/May/23
God bless you sir.
Godblessyousir.
Answered by BaliramKumar last updated on 11/May/23
α+β+γ = 0  αβ+βγ+γα = p  αβγ = −q  Σα^4  = α^4 +β^4 +γ^4  = (α^2 )^2 +(β^2 )^2 +(γ^2 )^2              ⇒(α^2 +β^2 +γ^2 )^2 −2(α^2 β^2 +β^2 γ^2 +γ^2 α^2 )             ⇒{(α+β+γ)^2 −2(αβ+βγ+γα)}^2              −2{(αβ+βγ+γα)^2 −2(αβ^2 γ+αβγ^2 +α^2 βγ)}                         ⇒{(α+β+γ)^2 −2(αβ+βγ+γα)}^2              −2{(αβ+βγ+γα)^2 −2αβγ(α+β+γ)}             ⇒{(0)^2 −2(p)}^2 −2{(p)^2 −2(−q)(0)}             ⇒ {−2p}^2 −2{p^2 −0}             ⇒ 4p^2 −2p^2              ⇒  determinant (((2p^2 )))
α+β+γ=0αβ+βγ+γα=pαβγ=qΣα4=α4+β4+γ4=(α2)2+(β2)2+(γ2)2(α2+β2+γ2)22(α2β2+β2γ2+γ2α2){(α+β+γ)22(αβ+βγ+γα)}22{(αβ+βγ+γα)22(αβ2γ+αβγ2+α2βγ)}{(α+β+γ)22(αβ+βγ+γα)}22{(αβ+βγ+γα)22αβγ(α+β+γ)}{(0)22(p)}22{(p)22(q)(0)}{2p}22{p20}4p22p22p2
Commented by Tawa11 last updated on 11/May/23
God bless you sir.
Godblessyousir.

Leave a Reply

Your email address will not be published. Required fields are marked *