Question Number 192186 by Tawa11 last updated on 11/May/23
$$\mathrm{If}\:\:\alpha,\:\beta\:\:\mathrm{and}\:\gamma\:\mathrm{are}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:\:\:\mathrm{x}^{\mathrm{3}} \:\:+\:\:\mathrm{px}\:\:+\:\:\mathrm{q}\:\:=\:\:\mathrm{0},\:\:\:\:\mathrm{find}\:\:\:\Sigma\alpha^{\mathrm{4}} . \\ $$
Answered by BaliramKumar last updated on 10/May/23
$$\mathrm{2p}^{\mathrm{2}} \\ $$
Commented by Tawa11 last updated on 10/May/23
$$\mathrm{Please}\:\mathrm{workings}\:\mathrm{sir}? \\ $$
Answered by manxsol last updated on 11/May/23
$$\alpha+\beta+\gamma=\mathrm{0} \\ $$$$\alpha\beta+\alpha\gamma+\beta\gamma={p} \\ $$$$\alpha\beta\gamma=−{q} \\ $$$$\alpha^{\mathrm{4}} +{p}\alpha^{\mathrm{2}} +{q}\alpha=\mathrm{0} \\ $$$$\beta^{\mathrm{4}} +{p}\beta^{\mathrm{2}} +{q}\beta=\mathrm{0} \\ $$$$\gamma^{\mathrm{4}} +{p}\gamma^{\mathrm{2}} +{q}\gamma=\mathrm{0} \\ $$$$\alpha^{\mathrm{4}} +\beta^{\mathrm{4}} +\gamma^{\mathrm{4}} +{p}\left(\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} +\gamma^{\mathrm{2}} \right)+{q}\left(\alpha+\beta+\gamma=\mathrm{0}\right. \\ $$$$\left(\alpha+\beta+\gamma\right)^{\mathrm{2}} =\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} +\gamma^{\mathrm{2}} +\mathrm{2}\left(\alpha\beta+\alpha\gamma+\beta\gamma\right)=\mathrm{0} \\ $$$$\:\left(\mathrm{0}\right)^{\mathrm{2}} =\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} +\gamma^{\mathrm{2}} +\mathrm{2}\left({p}\right) \\ $$$$−\mathrm{2}{p}=\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} +\gamma^{\mathrm{2}} \\ $$$$\alpha^{\mathrm{4}} +\beta^{\mathrm{4}} +\gamma^{\mathrm{4}} +{p}\left(−\mathrm{2}{p}\right)+{q}\left(\mathrm{0}\right)=\mathrm{0} \\ $$$$\alpha^{\mathrm{4}} +\beta^{\mathrm{4}} +\gamma^{\mathrm{4}} =\mathrm{2}{p}^{\mathrm{2}} \\ $$
Commented by Tawa11 last updated on 11/May/23
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$
Answered by BaliramKumar last updated on 11/May/23
$$\alpha+\beta+\gamma\:=\:\mathrm{0} \\ $$$$\alpha\beta+\beta\gamma+\gamma\alpha\:=\:\mathrm{p} \\ $$$$\alpha\beta\gamma\:=\:−\mathrm{q} \\ $$$$\Sigma\alpha^{\mathrm{4}} \:=\:\alpha^{\mathrm{4}} +\beta^{\mathrm{4}} +\gamma^{\mathrm{4}} \:=\:\left(\alpha^{\mathrm{2}} \right)^{\mathrm{2}} +\left(\beta^{\mathrm{2}} \right)^{\mathrm{2}} +\left(\gamma^{\mathrm{2}} \right)^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\Rightarrow\left(\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} +\gamma^{\mathrm{2}} \right)^{\mathrm{2}} −\mathrm{2}\left(\alpha^{\mathrm{2}} \beta^{\mathrm{2}} +\beta^{\mathrm{2}} \gamma^{\mathrm{2}} +\gamma^{\mathrm{2}} \alpha^{\mathrm{2}} \right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\Rightarrow\left\{\left(\alpha+\beta+\gamma\right)^{\mathrm{2}} −\mathrm{2}\left(\alpha\beta+\beta\gamma+\gamma\alpha\right)\right\}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:−\mathrm{2}\left\{\left(\alpha\beta+\beta\gamma+\gamma\alpha\right)^{\mathrm{2}} −\mathrm{2}\left(\alpha\beta^{\mathrm{2}} \gamma+\alpha\beta\gamma^{\mathrm{2}} +\alpha^{\mathrm{2}} \beta\gamma\right)\right\}\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\Rightarrow\left\{\left(\alpha+\beta+\gamma\right)^{\mathrm{2}} −\mathrm{2}\left(\alpha\beta+\beta\gamma+\gamma\alpha\right)\right\}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:−\mathrm{2}\left\{\left(\alpha\beta+\beta\gamma+\gamma\alpha\right)^{\mathrm{2}} −\mathrm{2}\alpha\beta\gamma\left(\alpha+\beta+\gamma\right)\right\} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\Rightarrow\left\{\left(\mathrm{0}\right)^{\mathrm{2}} −\mathrm{2}\left(\mathrm{p}\right)\right\}^{\mathrm{2}} −\mathrm{2}\left\{\left(\mathrm{p}\right)^{\mathrm{2}} −\mathrm{2}\left(−\mathrm{q}\right)\left(\mathrm{0}\right)\right\} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\Rightarrow\:\left\{−\mathrm{2p}\right\}^{\mathrm{2}} −\mathrm{2}\left\{\mathrm{p}^{\mathrm{2}} −\mathrm{0}\right\} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\Rightarrow\:\mathrm{4p}^{\mathrm{2}} −\mathrm{2p}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\Rightarrow\:\begin{array}{|c|}{\mathrm{2p}^{\mathrm{2}} }\\\hline\end{array}\: \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$
Commented by Tawa11 last updated on 11/May/23
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$