Menu Close

If-and-are-the-solution-of-equation-a-tan-b-sec-c-find-the-value-of-tan-




Question Number 105759 by bramlex last updated on 31/Jul/20
If α and β are the solution of  equation a tan θ + b sec θ = c .   find the value of tan (α+β).
Ifαandβarethesolutionofequationatanθ+bsecθ=c.findthevalueoftan(α+β).
Commented by bramlex last updated on 31/Jul/20
thx both
thxboth
Answered by john santu last updated on 31/Jul/20
⇒a tan θ + b sec θ = c   ⇒ a sin θ + b = c cos θ   using identity sin θ = ((2tan ((θ/2)))/(1+tan^2 ((θ/2))))  cos θ = ((1−tan^2 ((θ/2)))/(1+tan^2 ((θ/2))))  we have (b+c)tan^2 ((θ/2))+2a tan ((θ/2))+b−c=0  the equation is quadratic in   tan ((θ/2)) and then tan ((α/2)) &tan ((β/2))  are the roots of this equation.  by Vieta′s rule    { ((tan ((α/2))+tan ((β/2))=−((2a)/(b+c)))),((tan ((α/2)).tan ((β/2))=((b−c)/(b+c)))) :}  applied identity tan (((α+β)/2))=((−((2a)/(b+c)))/(1−((b−c)/(b+c))))  tan (((α+β)/2)) = −(a/c)  using double angle formula  tan (α+β) = ((2(−(a/c)))/(1−(a^2 /c^2 ))) = ((2ac)/(a^2 −c^2 ))  ♠⧫
atanθ+bsecθ=casinθ+b=ccosθusingidentitysinθ=2tan(θ2)1+tan2(θ2)cosθ=1tan2(θ2)1+tan2(θ2)wehave(b+c)tan2(θ2)+2atan(θ2)+bc=0theequationisquadraticintan(θ2)andthentan(α2)&tan(β2)aretherootsofthisequation.byVietasrule{tan(α2)+tan(β2)=2ab+ctan(α2).tan(β2)=bcb+cappliedidentitytan(α+β2)=2ab+c1bcb+ctan(α+β2)=acusingdoubleangleformulatan(α+β)=2(ac)1a2c2=2aca2c2
Commented by Coronavirus last updated on 01/Aug/20
clear thanks you sir
Answered by bobhans last updated on 31/Jul/20
a tan θ + b sec θ = c   →a tan θ−c = −b sec θ  squaring both side   (a tan θ−c)^2  = b^2 (1+tan^2 θ)  (a^2 −b^2 )tan^2 θ −2ac tan θ + c^2 −b^2 =0   has the roots are tan α and tan β  Vieta′s rule  { ((tan α+tan β=((2ac)/(a^2 −b^2 )))),((tan α.tan β = ((c^2 −b^2 )/(a^2 −b^2 )))) :}  therefore tan (α+β) = ((tan α+tan β)/(1−tan α.tan β))   = ((2ac)/(a^2 −c^2 )) ★
atanθ+bsecθ=catanθc=bsecθsquaringbothside(atanθc)2=b2(1+tan2θ)(a2b2)tan2θ2actanθ+c2b2=0hastherootsaretanαandtanβVietasrule{tanα+tanβ=2aca2b2tanα.tanβ=c2b2a2b2thereforetan(α+β)=tanα+tanβ1tanα.tanβ=2aca2c2
Commented by Coronavirus last updated on 01/Aug/20
wouah very fast method

Leave a Reply

Your email address will not be published. Required fields are marked *