Menu Close

If-and-satisfy-sin-cos-1-2-then-the-greatest-value-of-2cos-sin-




Question Number 27821 by bmind4860 last updated on 15/Jan/18
If α and β satisfy sinαcosβ= −(1/2) then  the greatest value of 2cosαsinβ
$${If}\:\alpha\:{and}\:\beta\:{satisfy}\:{sin}\alpha{cos}\beta=\:−\frac{\mathrm{1}}{\mathrm{2}}\:{then} \\ $$$${the}\:{greatest}\:{value}\:{of}\:\mathrm{2}{cos}\alpha{sin}\beta \\ $$
Answered by ajfour last updated on 15/Jan/18
sin αcos β=−(1/2)  ⇒2sin αcos β=−1  ⇒sin (α+β)+sin (α−β)=−1  greatest value of sin (α+β)=0  when sin (α−β)=−1  and 2sin (α+β)=2sin αcos β                                          +2cos αsin β  so 2cos αsin β=2sin (α+β)+1  greatest value of      2cos αsin β= 1 .
$$\mathrm{sin}\:\alpha\mathrm{cos}\:\beta=−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{2sin}\:\alpha\mathrm{cos}\:\beta=−\mathrm{1} \\ $$$$\Rightarrow\mathrm{sin}\:\left(\alpha+\beta\right)+\mathrm{sin}\:\left(\alpha−\beta\right)=−\mathrm{1} \\ $$$${greatest}\:{value}\:{of}\:\mathrm{sin}\:\left(\alpha+\beta\right)=\mathrm{0} \\ $$$${when}\:\mathrm{sin}\:\left(\alpha−\beta\right)=−\mathrm{1} \\ $$$${and}\:\mathrm{2sin}\:\left(\alpha+\beta\right)=\mathrm{2sin}\:\alpha\mathrm{cos}\:\beta \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\mathrm{2cos}\:\alpha\mathrm{sin}\:\beta \\ $$$${so}\:\mathrm{2cos}\:\alpha\mathrm{sin}\:\beta=\mathrm{2sin}\:\left(\alpha+\beta\right)+\mathrm{1} \\ $$$${greatest}\:{value}\:{of}\: \\ $$$$\:\:\:\mathrm{2cos}\:\alpha\mathrm{sin}\:\beta=\:\mathrm{1}\:. \\ $$
Commented by bmind4860 last updated on 15/Jan/18
great! this is the best and far better solution from  that lenthy solution of differentiation.
$${great}!\:{this}\:{is}\:{the}\:{best}\:{and}\:{far}\:{better}\:{solution}\:{from} \\ $$$${that}\:{lenthy}\:{solution}\:{of}\:{differentiation}. \\ $$$$ \\ $$
Commented by bmind4860 last updated on 15/Jan/18
really sometimes just analyzing the problem  gives easiest solution  thank you! again
$${really}\:{sometimes}\:{just}\:{analyzing}\:{the}\:{problem} \\ $$$${gives}\:{easiest}\:{solution} \\ $$$${thank}\:{you}!\:{again} \\ $$$$ \\ $$
Commented by ajfour last updated on 15/Jan/18
welcome sir! thank you too,  and Prakash Sir, who had  found error in my initial  wrong answer.
$${welcome}\:{sir}!\:{thank}\:{you}\:{too}, \\ $$$${and}\:{Prakash}\:{Sir},\:{who}\:{had} \\ $$$${found}\:{error}\:{in}\:{my}\:{initial} \\ $$$${wrong}\:{answer}. \\ $$
Commented by bmind4860 last updated on 15/Jan/18
sir can you please help me in the new  questions posted by me
$${sir}\:{can}\:{you}\:{please}\:{help}\:{me}\:{in}\:{the}\:{new} \\ $$$${questions}\:{posted}\:{by}\:{me} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *