Menu Close

If-angles-A-and-B-satisfy-2-cos-A-cos-B-cos-3-B-and-2-sin-A-sin-B-sin-3-B-then-the-value-of-1620sin-2-A-B-is-




Question Number 18891 by Tinkutara last updated on 01/Aug/17
If angles A and B satisfy (√2) cos A =  cos B + cos^3  B and (√2) sin A = sin B −  sin^3  B, then the value of 1620sin^2 (A − B)  is
IfanglesAandBsatisfy2cosA=cosB+cos3Band2sinA=sinBsin3B,thenthevalueof1620sin2(AB)is
Answered by behi.8.3.4.1.7@gmail.com last updated on 02/Aug/17
2cos^2 A=cos^2 B(1+cos^2 B)^2   2sin^2 A=sin^2 B(1−sin^2 B)^2                    cosB=t  ⇒2=t^2 (1+t^2 )^2 +(1−t^2 ).t^4 =t^2 (1+3t^2 )  ⇒3t^4 +t^2 −2=0⇒t^2 =((−1+(√(1+24)))/6)=(2/3)  ⇒cos^2 B=(2/3),sin^2 B=(1/3)  ⇒cos^2 A=(1/3).(1+(2/3))^2 =(1/3).((25)/9)=((25)/(27))  ⇒cos^2 A=((25)/(27)),sin^2 A=(2/(27))  sin(A−B)=sinA.cosB−cosA.sinB=  =((√2)/(3(√3))).((√2)/( (√3)))−(5/(3(√3))).(1/( (√3)))=(2/9)−(5/9)=−(1/3)  ⇒1620×sin^2 (A−B)=1620×(1/9)=180 .■
2cos2A=cos2B(1+cos2B)22sin2A=sin2B(1sin2B)2cosB=t2=t2(1+t2)2+(1t2).t4=t2(1+3t2)3t4+t22=0t2=1+1+246=23cos2B=23,sin2B=13cos2A=13.(1+23)2=13.259=2527cos2A=2527,sin2A=227sin(AB)=sinA.cosBcosA.sinB==233.23533.13=2959=131620×sin2(AB)=1620×19=180.◼
Answered by ajfour last updated on 01/Aug/17
(√2)sin (A−B)=(√2)sin Acos B−(√2)cos Asin B    =(sin B−sin^3 B)cos B                      −(cos B+cos^3 B)sin B    =−(sin Bcos B)(1)  ⇒2sin^2 (A−B)=sin^2 Bcos^2 B  ..(i)     As  (√2)cos A=cos B(1+cos^2 B)  and   (√2)sin A=sin B(1−sin^2 B)  squaring and adding above two eqns:    2=cos^2 B(1+cos^2 B)^2 +(1−cos^2 B)(cos^2 B)^2     2=cos^2 B+2cos^4 B+cos^6 B              +cos^4 B−cos^6 B  ⇒   3cos^4 B+cos^2 B−2=0   3cos^4 B+3cos^2 B−2cos^2 B−2=0  ⇒  (3cos^2 B−2)(cos^2 B+1)=0  ⇒    cos^2 B=(2/3)   and   sin^2 B=(1/3)  Using in (i):      2sin^2 (A−B)=sin^2 Bcos^2 B                                =(1/3)×(2/3) = (2/9)    So  1620sin^2 (A−B)=810×(2/9)           1620sin^2 (A−B)=180 .
2sin(AB)=2sinAcosB2cosAsinB=(sinBsin3B)cosB(cosB+cos3B)sinB=(sinBcosB)(1)2sin2(AB)=sin2Bcos2B..(i)As2cosA=cosB(1+cos2B)and2sinA=sinB(1sin2B)squaringandaddingabovetwoeqns:2=cos2B(1+cos2B)2+(1cos2B)(cos2B)22=cos2B+2cos4B+cos6B+cos4Bcos6B3cos4B+cos2B2=03cos4B+3cos2B2cos2B2=0(3cos2B2)(cos2B+1)=0cos2B=23andsin2B=13Usingin(i):2sin2(AB)=sin2Bcos2B=13×23=29So1620sin2(AB)=810×291620sin2(AB)=180.
Commented by behi.8.3.4.1.7@gmail.com last updated on 02/Aug/17
it is perfect mr Ajfour.
itisperfectmrAjfour.
Commented by ajfour last updated on 01/Aug/17
Is this correct?
Isthiscorrect?
Commented by Tinkutara last updated on 01/Aug/17
Thank you very much ajfour Sir!
ThankyouverymuchajfourSir!
Commented by ajfour last updated on 01/Aug/17
thanks for confirming.
thanksforconfirming.

Leave a Reply

Your email address will not be published. Required fields are marked *