Menu Close

If-angles-A-and-B-satisfy-2-cos-A-cos-B-cos-3-B-and-2-sin-A-sin-B-sin-3-B-then-the-value-of-1620sin-2-A-B-is-




Question Number 18891 by Tinkutara last updated on 01/Aug/17
If angles A and B satisfy (√2) cos A =  cos B + cos^3  B and (√2) sin A = sin B −  sin^3  B, then the value of 1620sin^2 (A − B)  is
$$\mathrm{If}\:\mathrm{angles}\:{A}\:\mathrm{and}\:{B}\:\mathrm{satisfy}\:\sqrt{\mathrm{2}}\:\mathrm{cos}\:{A}\:= \\ $$$$\mathrm{cos}\:{B}\:+\:\mathrm{cos}^{\mathrm{3}} \:{B}\:\mathrm{and}\:\sqrt{\mathrm{2}}\:\mathrm{sin}\:{A}\:=\:\mathrm{sin}\:{B}\:− \\ $$$$\mathrm{sin}^{\mathrm{3}} \:{B},\:\mathrm{then}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{1620sin}^{\mathrm{2}} \left({A}\:−\:{B}\right) \\ $$$$\mathrm{is} \\ $$
Answered by behi.8.3.4.1.7@gmail.com last updated on 02/Aug/17
2cos^2 A=cos^2 B(1+cos^2 B)^2   2sin^2 A=sin^2 B(1−sin^2 B)^2                    cosB=t  ⇒2=t^2 (1+t^2 )^2 +(1−t^2 ).t^4 =t^2 (1+3t^2 )  ⇒3t^4 +t^2 −2=0⇒t^2 =((−1+(√(1+24)))/6)=(2/3)  ⇒cos^2 B=(2/3),sin^2 B=(1/3)  ⇒cos^2 A=(1/3).(1+(2/3))^2 =(1/3).((25)/9)=((25)/(27))  ⇒cos^2 A=((25)/(27)),sin^2 A=(2/(27))  sin(A−B)=sinA.cosB−cosA.sinB=  =((√2)/(3(√3))).((√2)/( (√3)))−(5/(3(√3))).(1/( (√3)))=(2/9)−(5/9)=−(1/3)  ⇒1620×sin^2 (A−B)=1620×(1/9)=180 .■
$$\mathrm{2}{cos}^{\mathrm{2}} {A}={cos}^{\mathrm{2}} {B}\left(\mathrm{1}+{cos}^{\mathrm{2}} {B}\right)^{\mathrm{2}} \\ $$$$\mathrm{2}{sin}^{\mathrm{2}} {A}={sin}^{\mathrm{2}} {B}\left(\mathrm{1}−{sin}^{\mathrm{2}} {B}\right)^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{cosB}={t} \\ $$$$\Rightarrow\mathrm{2}={t}^{\mathrm{2}} \left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} +\left(\mathrm{1}−{t}^{\mathrm{2}} \right).{t}^{\mathrm{4}} ={t}^{\mathrm{2}} \left(\mathrm{1}+\mathrm{3}{t}^{\mathrm{2}} \right) \\ $$$$\Rightarrow\mathrm{3}{t}^{\mathrm{4}} +{t}^{\mathrm{2}} −\mathrm{2}=\mathrm{0}\Rightarrow{t}^{\mathrm{2}} =\frac{−\mathrm{1}+\sqrt{\mathrm{1}+\mathrm{24}}}{\mathrm{6}}=\frac{\mathrm{2}}{\mathrm{3}} \\ $$$$\Rightarrow{cos}^{\mathrm{2}} {B}=\frac{\mathrm{2}}{\mathrm{3}},{sin}^{\mathrm{2}} {B}=\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\Rightarrow{cos}^{\mathrm{2}} {A}=\frac{\mathrm{1}}{\mathrm{3}}.\left(\mathrm{1}+\frac{\mathrm{2}}{\mathrm{3}}\right)^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{3}}.\frac{\mathrm{25}}{\mathrm{9}}=\frac{\mathrm{25}}{\mathrm{27}} \\ $$$$\Rightarrow{cos}^{\mathrm{2}} {A}=\frac{\mathrm{25}}{\mathrm{27}},{sin}^{\mathrm{2}} {A}=\frac{\mathrm{2}}{\mathrm{27}} \\ $$$${sin}\left({A}−{B}\right)={sinA}.{cosB}−{cosA}.{sinB}= \\ $$$$=\frac{\sqrt{\mathrm{2}}}{\mathrm{3}\sqrt{\mathrm{3}}}.\frac{\sqrt{\mathrm{2}}}{\:\sqrt{\mathrm{3}}}−\frac{\mathrm{5}}{\mathrm{3}\sqrt{\mathrm{3}}}.\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}=\frac{\mathrm{2}}{\mathrm{9}}−\frac{\mathrm{5}}{\mathrm{9}}=−\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\Rightarrow\mathrm{1620}×{sin}^{\mathrm{2}} \left({A}−{B}\right)=\mathrm{1620}×\frac{\mathrm{1}}{\mathrm{9}}=\mathrm{180}\:.\blacksquare \\ $$
Answered by ajfour last updated on 01/Aug/17
(√2)sin (A−B)=(√2)sin Acos B−(√2)cos Asin B    =(sin B−sin^3 B)cos B                      −(cos B+cos^3 B)sin B    =−(sin Bcos B)(1)  ⇒2sin^2 (A−B)=sin^2 Bcos^2 B  ..(i)     As  (√2)cos A=cos B(1+cos^2 B)  and   (√2)sin A=sin B(1−sin^2 B)  squaring and adding above two eqns:    2=cos^2 B(1+cos^2 B)^2 +(1−cos^2 B)(cos^2 B)^2     2=cos^2 B+2cos^4 B+cos^6 B              +cos^4 B−cos^6 B  ⇒   3cos^4 B+cos^2 B−2=0   3cos^4 B+3cos^2 B−2cos^2 B−2=0  ⇒  (3cos^2 B−2)(cos^2 B+1)=0  ⇒    cos^2 B=(2/3)   and   sin^2 B=(1/3)  Using in (i):      2sin^2 (A−B)=sin^2 Bcos^2 B                                =(1/3)×(2/3) = (2/9)    So  1620sin^2 (A−B)=810×(2/9)           1620sin^2 (A−B)=180 .
$$\sqrt{\mathrm{2}}\mathrm{sin}\:\left(\mathrm{A}−\mathrm{B}\right)=\sqrt{\mathrm{2}}\mathrm{sin}\:\mathrm{Acos}\:\mathrm{B}−\sqrt{\mathrm{2}}\mathrm{cos}\:\mathrm{Asin}\:\mathrm{B} \\ $$$$\:\:=\left(\mathrm{sin}\:\mathrm{B}−\mathrm{sin}\:^{\mathrm{3}} \mathrm{B}\right)\mathrm{cos}\:\mathrm{B} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\left(\mathrm{cos}\:\mathrm{B}+\mathrm{cos}\:^{\mathrm{3}} \mathrm{B}\right)\mathrm{sin}\:\mathrm{B} \\ $$$$\:\:=−\left(\mathrm{sin}\:\mathrm{Bcos}\:\mathrm{B}\right)\left(\mathrm{1}\right) \\ $$$$\Rightarrow\mathrm{2sin}\:^{\mathrm{2}} \left(\mathrm{A}−\mathrm{B}\right)=\mathrm{sin}\:^{\mathrm{2}} \mathrm{Bcos}\:^{\mathrm{2}} \mathrm{B}\:\:..\left(\mathrm{i}\right) \\ $$$$\:\:\:\mathrm{As}\:\:\sqrt{\mathrm{2}}\mathrm{cos}\:\mathrm{A}=\mathrm{cos}\:\mathrm{B}\left(\mathrm{1}+\mathrm{cos}\:^{\mathrm{2}} \mathrm{B}\right) \\ $$$$\mathrm{and}\:\:\:\sqrt{\mathrm{2}}\mathrm{sin}\:\mathrm{A}=\mathrm{sin}\:\mathrm{B}\left(\mathrm{1}−\mathrm{sin}\:^{\mathrm{2}} \mathrm{B}\right) \\ $$$$\mathrm{squaring}\:\mathrm{and}\:\mathrm{adding}\:\mathrm{above}\:\mathrm{two}\:\mathrm{eqns}: \\ $$$$\:\:\mathrm{2}=\mathrm{cos}\:^{\mathrm{2}} \mathrm{B}\left(\mathrm{1}+\mathrm{cos}\:^{\mathrm{2}} \mathrm{B}\right)^{\mathrm{2}} +\left(\mathrm{1}−\mathrm{cos}\:^{\mathrm{2}} \mathrm{B}\right)\left(\mathrm{cos}\:^{\mathrm{2}} \mathrm{B}\right)^{\mathrm{2}} \\ $$$$\:\:\mathrm{2}=\mathrm{cos}\:^{\mathrm{2}} \mathrm{B}+\mathrm{2cos}\:^{\mathrm{4}} \mathrm{B}+\mathrm{cos}\:^{\mathrm{6}} \mathrm{B} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:+\mathrm{cos}\:^{\mathrm{4}} \mathrm{B}−\mathrm{cos}\:^{\mathrm{6}} \mathrm{B} \\ $$$$\Rightarrow\:\:\:\mathrm{3cos}\:^{\mathrm{4}} \mathrm{B}+\mathrm{cos}\:^{\mathrm{2}} \mathrm{B}−\mathrm{2}=\mathrm{0} \\ $$$$\:\mathrm{3cos}\:^{\mathrm{4}} \mathrm{B}+\mathrm{3cos}\:^{\mathrm{2}} \mathrm{B}−\mathrm{2cos}\:^{\mathrm{2}} \mathrm{B}−\mathrm{2}=\mathrm{0} \\ $$$$\Rightarrow\:\:\left(\mathrm{3cos}\:^{\mathrm{2}} \mathrm{B}−\mathrm{2}\right)\left(\mathrm{cos}\:^{\mathrm{2}} \mathrm{B}+\mathrm{1}\right)=\mathrm{0} \\ $$$$\Rightarrow\:\:\:\:\mathrm{cos}\:^{\mathrm{2}} \mathrm{B}=\frac{\mathrm{2}}{\mathrm{3}}\:\:\:\mathrm{and}\:\:\:\mathrm{sin}\:^{\mathrm{2}} \mathrm{B}=\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\mathrm{Using}\:\mathrm{in}\:\left(\mathrm{i}\right): \\ $$$$\:\:\:\:\mathrm{2sin}\:^{\mathrm{2}} \left(\mathrm{A}−\mathrm{B}\right)=\mathrm{sin}\:^{\mathrm{2}} \mathrm{Bcos}\:^{\mathrm{2}} \mathrm{B} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{3}}×\frac{\mathrm{2}}{\mathrm{3}}\:=\:\frac{\mathrm{2}}{\mathrm{9}} \\ $$$$\:\:\mathrm{So}\:\:\mathrm{1620sin}\:^{\mathrm{2}} \left(\mathrm{A}−\mathrm{B}\right)=\mathrm{810}×\frac{\mathrm{2}}{\mathrm{9}} \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{1620sin}\:^{\mathrm{2}} \left(\mathrm{A}−\mathrm{B}\right)=\mathrm{180}\:. \\ $$
Commented by behi.8.3.4.1.7@gmail.com last updated on 02/Aug/17
it is perfect mr Ajfour.
$${it}\:{is}\:{perfect}\:{mr}\:{Ajfour}. \\ $$
Commented by ajfour last updated on 01/Aug/17
Is this correct?
$$\mathrm{Is}\:\mathrm{this}\:\mathrm{correct}? \\ $$
Commented by Tinkutara last updated on 01/Aug/17
Thank you very much ajfour Sir!
$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{ajfour}\:\mathrm{Sir}! \\ $$
Commented by ajfour last updated on 01/Aug/17
thanks for confirming.
$$\mathrm{thanks}\:\mathrm{for}\:\mathrm{confirming}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *