Menu Close

if-arctan-x-iy-a-ib-with-a-and-b-reals-determine-a-and-b-




Question Number 116560 by Bird last updated on 04/Oct/20
if arctan(x+iy) =a+ib  with a and b reals determine  a and b
ifarctan(x+iy)=a+ibwithaandbrealsdetermineaandb
Commented by MJS_new last updated on 05/Oct/20
arctan (x+iy) =a+ib  a=(π/2)sign x +(1/2)(arctan ((y−1)/x) −arctan ((y+1)/x))  b=(1/4)ln ((x^2 +(y+1)^2 )/(x^2 +(y−1)^2 ))  if x=0  a=real ((i/2)ln ((1+y)/(1−y)))  b=imag ((i/2)ln ((1+y)/(1−y)))
arctan(x+iy)=a+iba=π2signx+12(arctany1xarctany+1x)b=14lnx2+(y+1)2x2+(y1)2ifx=0a=real(i2ln1+y1y)b=imag(i2ln1+y1y)
Answered by Olaf last updated on 05/Oct/20
x+iy = tan(a+ib)  x+iy = ((tana+tanib)/(1−tanatanib))    tanib = ((sinib)/(cosib))  tanib = (((e^(i(ib)) −e^(−i(ib)) )/(2i))/((e^(i(ib)) +e^(−i(ib)) )/2)) = −i((e^(−b) −e^(ib) )/(e^(−ib) +e^(ib) ))  tanib  = i((e^b −e^(−ib) )/(e^(ib) +e^(−ib) )) = i((sinhb)/(coshb)) = itanhb    x+iy = ((tana+itanhb)/(1−itanatanhb))  x+iy = (((tana+itanhb)(1+itanatanhb))/(1+tan^2 atanh^2 b))  x+iy = ((tana(1−tanh^2 b)+itanhb(1+tan^2 a))/(1+tan^2 atanh^2 b))    (y/x) = ((tanhb(1+tan^2 a))/(tana(1−tanh^2 b)))  (y/x) = ((tanhbcosh^2 b)/(tanacos^2 a)) = ((sinhbcoshb)/(sinacosa))  (y/x) = ((tanhbcosh^2 b)/(tanacos^2 a)) = ((sinh2b)/(sin2a)) (1)    x^2 +y^2  = ((tan^2 a)/(cosh^4 b))+((tanh^2 b)/(cos^4 a))  x^2 +y^2  = ((sin^2 acos^2 a+sinh^2 bcosh^2 b)/(cos^4 acosh^4 b))  x^2 +y^2  = ((sin^2 2a+sinh^2 2b)/(4cos^4 acosh^4 b)) (2)  work in progress...
x+iy=tan(a+ib)x+iy=tana+tanib1tanatanibtanib=sinibcosibtanib=ei(ib)ei(ib)2iei(ib)+ei(ib)2=iebeibeib+eibtanib=iebeibeib+eib=isinhbcoshb=itanhbx+iy=tana+itanhb1itanatanhbx+iy=(tana+itanhb)(1+itanatanhb)1+tan2atanh2bx+iy=tana(1tanh2b)+itanhb(1+tan2a)1+tan2atanh2byx=tanhb(1+tan2a)tana(1tanh2b)yx=tanhbcosh2btanacos2a=sinhbcoshbsinacosayx=tanhbcosh2btanacos2a=sinh2bsin2a(1)x2+y2=tan2acosh4b+tanh2bcos4ax2+y2=sin2acos2a+sinh2bcosh2bcos4acosh4bx2+y2=sin22a+sinh22b4cos4acosh4b(2)workinprogress

Leave a Reply

Your email address will not be published. Required fields are marked *