Menu Close

If-are-root-of-quadratic-equation-ax-2-bx-c-then-lim-x-1-cos-ax-2-bx-c-x-2-




Question Number 63920 by raj last updated on 11/Jul/19
If α,β are root of quadratic equation  ax^2 +bx+c then  lim_(x→α) ((1−cos (ax^2 +bx+c))/((x−α)^2 ))=?
Ifα,βarerootofquadraticequationax2+bx+cthenlimxα1cos(ax2+bx+c)(xα)2=?
Commented by Prithwish sen last updated on 11/Jul/19
=Lt[((sin(((x−α)(x−β))/2))/(((x−α)(x−β))/2))]^2 .(((x−β)^2 )/2)  =(((α−β)^2 )/2)  please check.
=Lt[sin(xα)(xβ)2(xα)(xβ)2]2.(xβ)22=(αβ)22pleasecheck.
Commented by kaivan.ahmadi last updated on 11/Jul/19
hop  lim_(x→α)   (((2ax+b)sin(ax^2 +bx+c))/(2(x−α)))=^(hop)   lim_(x→α)   (((2ax+b)^2 cos(ax^2 +bx+c))/2)=(((2aα+b)^2 )/2)
hoplimxα(2ax+b)sin(ax2+bx+c)2(xα)=hoplimxα(2ax+b)2cos(ax2+bx+c)2=(2aα+b)22
Commented by mathmax by abdo last updated on 11/Jul/19
let u(x)=ax^2  +bx +c we have lim_(x→α) u(x)=0 and   1−cos(u(x)) ∼((u^2 (x))/2)   (x∈V(α))  ⇒  ((1−cosu(x))/((x−α)^2 )) ∼((u^2 (x))/(2(x−α)^2 )) =(((a(x−α)(x−β))^2 )/(2(x−α)^2 )) =((a^2 (x−β)^2 )/2) ⇒  lim_(x→α)   ((1−cosu(x))/((x−α)^2 )) =(a^2 /2)(α−β)^2  .
letu(x)=ax2+bx+cwehavelimxαu(x)=0and1cos(u(x))u2(x)2(xV(α))1cosu(x)(xα)2u2(x)2(xα)2=(a(xα)(xβ))22(xα)2=a2(xβ)22limxα1cosu(x)(xα)2=a22(αβ)2.
Commented by raj last updated on 11/Jul/19
thank you
thankyou
Commented by mathmax by abdo last updated on 12/Jul/19
you are welcome.
youarewelcome.

Leave a Reply

Your email address will not be published. Required fields are marked *