Question Number 158335 by mr W last updated on 02/Nov/21
$${if}\:\alpha,\beta,\gamma\:{are}\:{the}\:{angles}\:{of}\:{a}\:{triangle}, \\ $$$${find}\: \\ $$$$\frac{\mathrm{1}}{\boldsymbol{\mathrm{tan}}\:\boldsymbol{\alpha}\:\boldsymbol{\mathrm{tan}}\:\boldsymbol{\beta}}+\frac{\mathrm{1}}{\boldsymbol{\mathrm{tan}}\:\boldsymbol{\beta}\:\boldsymbol{\mathrm{tan}}\:\boldsymbol{\gamma}}+\frac{\mathrm{1}}{\boldsymbol{\mathrm{tan}}\:\boldsymbol{\gamma}\:\boldsymbol{\mathrm{tan}}\:\boldsymbol{\alpha}}=? \\ $$
Answered by puissant last updated on 03/Nov/21
$$\:\:\:\:\:\:\:\:\:\:\:\alpha\:+\:\beta\:+\:\gamma\:=\:\pi\:\rightarrow\:\alpha\:+\:\beta\:=\:\pi−\gamma\:; \\ $$$$ \\ $$$$\Rightarrow\:{tan}\left(\alpha+\beta\right)={tan}\left(\pi−\gamma\right)\:\Rightarrow\:\frac{{tan}\alpha+{tan}\beta}{\mathrm{1}−{tan}\alpha{tan}\beta}\:=\:−{tan}\gamma \\ $$$$ \\ $$$$\Rightarrow\:{tan}\alpha+{tan}\beta\:=\:−{tan}\gamma+{tan}\alpha{tan}\beta{tan}\gamma \\ $$$$ \\ $$$$\Rightarrow\:{tan}\alpha+{tan}\beta+{tan}\gamma={tan}\alpha{tan}\beta{tan}\gamma \\ $$$$ \\ $$$$\frac{\mathrm{1}}{{tan}\alpha{tan}\beta}+\frac{\mathrm{1}}{{tan}\beta{tan}\gamma}+\frac{\mathrm{1}}{{tan}\alpha{tan}\gamma}\: \\ $$$$=\frac{{tan}\gamma}{{tan}\alpha{tan}\beta{tan}\gamma}+\frac{{tan}\alpha}{{tan}\alpha{tan}\beta{tan}\gamma}+\frac{{tan}\beta}{{tan}\alpha{tan}\beta{tan}\gamma} \\ $$$$=\frac{{tan}\alpha+{tan}\beta+{tan}\gamma}{{tan}\alpha{tan}\beta{tan}\gamma}\:=\:\mathrm{1} \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:………..\mathscr{L}{e}\:{puissant}………… \\ $$
Commented by mr W last updated on 03/Nov/21
$${thanks}! \\ $$
Commented by puissant last updated on 03/Nov/21
$${you}'{re}\:{welcome}\:{sir} \\ $$
Answered by ajfour last updated on 03/Nov/21
Commented by ajfour last updated on 03/Nov/21
$${required}=\frac{{pq}}{{r}^{\mathrm{2}} }+\frac{\left(\mathrm{1}−\frac{{pq}}{{r}^{\mathrm{2}} }\right)}{\left(\frac{{p}}{{q}}+\frac{{q}}{{r}}\right)}\left(\frac{{p}}{{r}}+\frac{{q}}{{r}}\right) \\ $$$$\:\:\:\:\:\:\:=\:\mathrm{1}\:. \\ $$
Commented by mr W last updated on 03/Nov/21
$${great}! \\ $$
Commented by ajfour last updated on 03/Nov/21
yeah, but not worth a like..
Commented by mr W last updated on 03/Nov/21
$${not}\:{many}\:{people}\:{can}\:{come}\:{to}\:{this} \\ $$$${method},\:{i}\:{think}. \\ $$
Commented by otchereabdullai@gmail.com last updated on 07/Nov/21
$$\mathrm{nice}\:\mathrm{one}! \\ $$