Menu Close

if-are-the-angles-of-a-triangle-find-sin-2-sin-2-sin-2-sin-sin-sin-




Question Number 158391 by mr W last updated on 03/Nov/21
if α,β,γ are the angles of a triangle,  find ((sin 2𝛂+sin 2𝛃+sin 2𝛄)/(sin 𝛂 sin 𝛃 sin 𝛄))=?
ifα,β,γaretheanglesofatriangle,findsin2α+sin2β+sin2γsinαsinβsinγ=?
Commented by MJS_new last updated on 03/Nov/21
4
4
Answered by puissant last updated on 03/Nov/21
((sin2α+sin2β+sin2γ)/(sinα sinβ sinγ)) = ((4sinαsinβsinγ)/(sinαsinβsinγ)) = 4.
sin2α+sin2β+sin2γsinαsinβsinγ=4sinαsinβsinγsinαsinβsinγ=4.
Answered by mr W last updated on 03/Nov/21
2π−2γ=2α+2β  −sin 2γ=sin 2α cos 2β+sin 2β cos 2α  −sin 2γ=sin 2α (1−2 sin^2  β)+sin 2β (1−2 sin^2  α)  sin 2α+sin 2β+sin 2γ=2 sin 2α  sin^2  β+2 sin 2β  sin^2  α  sin 2α+sin 2β+sin 2γ=4 sin α sin β(cos α  sin β+cos α  sin α)  sin 2α+sin 2β+sin 2γ=4 sin α sin β sin (α+β)  sin 2α+sin 2β+sin 2γ=4 sin α sin β sin γ  ⇒((sin 2α+sin 2β+sin 2γ)/(sin α sin β sin γ))=4
2π2γ=2α+2βsin2γ=sin2αcos2β+sin2βcos2αsin2γ=sin2α(12sin2β)+sin2β(12sin2α)sin2α+sin2β+sin2γ=2sin2αsin2β+2sin2βsin2αsin2α+sin2β+sin2γ=4sinαsinβ(cosαsinβ+cosαsinα)sin2α+sin2β+sin2γ=4sinαsinβsin(α+β)sin2α+sin2β+sin2γ=4sinαsinβsinγsin2α+sin2β+sin2γsinαsinβsinγ=4

Leave a Reply

Your email address will not be published. Required fields are marked *