Menu Close

if-are-the-angles-of-a-triangle-find-sin-2-sin-2-sin-2-sin-sin-sin-




Question Number 158391 by mr W last updated on 03/Nov/21
if α,β,γ are the angles of a triangle,  find ((sin 2𝛂+sin 2𝛃+sin 2𝛄)/(sin 𝛂 sin 𝛃 sin 𝛄))=?
$${if}\:\alpha,\beta,\gamma\:{are}\:{the}\:{angles}\:{of}\:{a}\:{triangle}, \\ $$$${find}\:\frac{\boldsymbol{\mathrm{sin}}\:\mathrm{2}\boldsymbol{\alpha}+\boldsymbol{\mathrm{sin}}\:\mathrm{2}\boldsymbol{\beta}+\boldsymbol{\mathrm{sin}}\:\mathrm{2}\boldsymbol{\gamma}}{\boldsymbol{\mathrm{sin}}\:\boldsymbol{\alpha}\:\boldsymbol{\mathrm{sin}}\:\boldsymbol{\beta}\:\boldsymbol{\mathrm{sin}}\:\boldsymbol{\gamma}}=? \\ $$
Commented by MJS_new last updated on 03/Nov/21
4
$$\mathrm{4} \\ $$
Answered by puissant last updated on 03/Nov/21
((sin2α+sin2β+sin2γ)/(sinα sinβ sinγ)) = ((4sinαsinβsinγ)/(sinαsinβsinγ)) = 4.
$$\frac{{sin}\mathrm{2}\alpha+{sin}\mathrm{2}\beta+{sin}\mathrm{2}\gamma}{{sin}\alpha\:{sin}\beta\:{sin}\gamma}\:=\:\frac{\mathrm{4}{sin}\alpha{sin}\beta{sin}\gamma}{{sin}\alpha{sin}\beta{sin}\gamma}\:=\:\mathrm{4}. \\ $$
Answered by mr W last updated on 03/Nov/21
2π−2γ=2α+2β  −sin 2γ=sin 2α cos 2β+sin 2β cos 2α  −sin 2γ=sin 2α (1−2 sin^2  β)+sin 2β (1−2 sin^2  α)  sin 2α+sin 2β+sin 2γ=2 sin 2α  sin^2  β+2 sin 2β  sin^2  α  sin 2α+sin 2β+sin 2γ=4 sin α sin β(cos α  sin β+cos α  sin α)  sin 2α+sin 2β+sin 2γ=4 sin α sin β sin (α+β)  sin 2α+sin 2β+sin 2γ=4 sin α sin β sin γ  ⇒((sin 2α+sin 2β+sin 2γ)/(sin α sin β sin γ))=4
$$\mathrm{2}\pi−\mathrm{2}\gamma=\mathrm{2}\alpha+\mathrm{2}\beta \\ $$$$−\mathrm{sin}\:\mathrm{2}\gamma=\mathrm{sin}\:\mathrm{2}\alpha\:\mathrm{cos}\:\mathrm{2}\beta+\mathrm{sin}\:\mathrm{2}\beta\:\mathrm{cos}\:\mathrm{2}\alpha \\ $$$$−\mathrm{sin}\:\mathrm{2}\gamma=\mathrm{sin}\:\mathrm{2}\alpha\:\left(\mathrm{1}−\mathrm{2}\:\mathrm{sin}^{\mathrm{2}} \:\beta\right)+\mathrm{sin}\:\mathrm{2}\beta\:\left(\mathrm{1}−\mathrm{2}\:\mathrm{sin}^{\mathrm{2}} \:\alpha\right) \\ $$$$\mathrm{sin}\:\mathrm{2}\alpha+\mathrm{sin}\:\mathrm{2}\beta+\mathrm{sin}\:\mathrm{2}\gamma=\mathrm{2}\:\mathrm{sin}\:\mathrm{2}\alpha\:\:\mathrm{sin}^{\mathrm{2}} \:\beta+\mathrm{2}\:\mathrm{sin}\:\mathrm{2}\beta\:\:\mathrm{sin}^{\mathrm{2}} \:\alpha \\ $$$$\mathrm{sin}\:\mathrm{2}\alpha+\mathrm{sin}\:\mathrm{2}\beta+\mathrm{sin}\:\mathrm{2}\gamma=\mathrm{4}\:\mathrm{sin}\:\alpha\:\mathrm{sin}\:\beta\left(\mathrm{cos}\:\alpha\:\:\mathrm{sin}\:\beta+\mathrm{cos}\:\alpha\:\:\mathrm{sin}\:\alpha\right) \\ $$$$\mathrm{sin}\:\mathrm{2}\alpha+\mathrm{sin}\:\mathrm{2}\beta+\mathrm{sin}\:\mathrm{2}\gamma=\mathrm{4}\:\mathrm{sin}\:\alpha\:\mathrm{sin}\:\beta\:\mathrm{sin}\:\left(\alpha+\beta\right) \\ $$$$\mathrm{sin}\:\mathrm{2}\alpha+\mathrm{sin}\:\mathrm{2}\beta+\mathrm{sin}\:\mathrm{2}\gamma=\mathrm{4}\:\mathrm{sin}\:\alpha\:\mathrm{sin}\:\beta\:\mathrm{sin}\:\gamma \\ $$$$\Rightarrow\frac{\mathrm{sin}\:\mathrm{2}\alpha+\mathrm{sin}\:\mathrm{2}\beta+\mathrm{sin}\:\mathrm{2}\gamma}{\mathrm{sin}\:\alpha\:\mathrm{sin}\:\beta\:\mathrm{sin}\:\gamma}=\mathrm{4} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *