Menu Close

if-are-the-roots-of-the-quadratic-equation-ax-2-bx-c-0-then-find-the-quadratic-equation-whose-roots-are-2-2-




Question Number 37139 by nishant last updated on 09/Jun/18
if α , β  are the roots of the quadratic  equation ax^2 +bx+c =0 then  find  the quadratic equation whose roots  are  α^(2   ) , β^2
ifα,βaretherootsofthequadraticequationax2+bx+c=0thenfindthequadraticequationwhoserootsareα2,β2
Answered by tanmay.chaudhury50@gmail.com last updated on 09/Jun/18
x^2 −x(α^2 +β^2 )+α^2 β^2 =0  x^2 −x{(α+β)^2 −2αβ}+(αβ)^2 =0×  x^2 −x{((b^2 /a^2 )−((2c)/a))}+(c^2 /a^2 )=0  a^2 x^2 −x(b^2 −2ac)+c^2 =0
x2x(α2+β2)+α2β2=0x2x{(α+β)22αβ}+(αβ)2=0×x2x{(b2a22ca)}+c2a2=0a2x2x(b22ac)+c2=0
Answered by Joel579 last updated on 09/Jun/18
α + β = −(b/a),    αβ = (c/a)    The new quadratic equation:  x^2  − (α^2  + β^2 )x + α^2 β^2  = 0  x^2  − [(α + β)^2  − 2αβ]x + (αβ)^2  = 0  x^2  − ((b^2 /a^2 ) − ((2c)/a))x + (c^2 /a^2 ) = 0  a^2 x^2  − (b^2  − 2ac)x + c^2  = 0
α+β=ba,αβ=caThenewquadraticequation:x2(α2+β2)x+α2β2=0x2[(α+β)22αβ]x+(αβ)2=0x2(b2a22ca)x+c2a2=0a2x2(b22ac)x+c2=0

Leave a Reply

Your email address will not be published. Required fields are marked *