Menu Close

if-arg-i-z-i-pi-4-find-RemZ-ImZ-




Question Number 146923 by mathdanisur last updated on 16/Jul/21
if    arg (((i - z)/i)) = (π/4)  find    RemZ + ImZ = ?
$${if}\:\:\:\:{arg}\:\left(\frac{{i}\:-\:{z}}{{i}}\right)\:=\:\frac{\pi}{\mathrm{4}} \\ $$$${find}\:\:\:\:{RemZ}\:+\:{ImZ}\:=\:? \\ $$
Answered by gsk2684 last updated on 16/Jul/21
arg(1+iz)=(π/4)  arg(1+i(x+iy))=(π/4)  arg((1−y)+ix)=(π/4)  1−y > 0 , x>0,1−y=x  then Re z + Im z = x+y=1   where 1>y, x>0
$${arg}\left(\mathrm{1}+{iz}\right)=\frac{\pi}{\mathrm{4}} \\ $$$${arg}\left(\mathrm{1}+{i}\left({x}+{iy}\right)\right)=\frac{\pi}{\mathrm{4}} \\ $$$${arg}\left(\left(\mathrm{1}−{y}\right)+{ix}\right)=\frac{\pi}{\mathrm{4}} \\ $$$$\mathrm{1}−{y}\:>\:\mathrm{0}\:,\:{x}>\mathrm{0},\mathrm{1}−{y}={x} \\ $$$${then}\:{Re}\:{z}\:+\:{Im}\:{z}\:=\:{x}+{y}=\mathrm{1}\: \\ $$$${where}\:\mathrm{1}>{y},\:{x}>\mathrm{0} \\ $$
Commented by SLVR last updated on 16/Jul/21
great sir
$${great}\:{sir} \\ $$
Commented by mathdanisur last updated on 16/Jul/21
thank you Ser
$${thank}\:{you}\:{Ser} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *