Menu Close

if-arg-z-1-4pi-3-and-arg-z-1-2-z-7pi-6-find-arg-z-




Question Number 146235 by mathdanisur last updated on 12/Jul/21
if   arg z_1  = ((4π)/3)   and   arg z_1 ^2  ∙ z = ((7π)/6)  find   arg z = ?
$${if}\:\:\:{arg}\:{z}_{\mathrm{1}} \:=\:\frac{\mathrm{4}\pi}{\mathrm{3}}\:\:\:{and}\:\:\:{arg}\:{z}_{\mathrm{1}} ^{\mathrm{2}} \:\centerdot\:{z}\:=\:\frac{\mathrm{7}\pi}{\mathrm{6}} \\ $$$${find}\:\:\:{arg}\:{z}\:=\:? \\ $$
Answered by gsk2684 last updated on 12/Jul/21
arg z_1 ^2 z=2arg z_1 +arg z+2kΠ
$${arg}\:{z}_{\mathrm{1}} ^{\mathrm{2}} {z}=\mathrm{2}{arg}\:{z}_{\mathrm{1}} +{arg}\:{z}+\mathrm{2}{k}\Pi \\ $$
Answered by puissant last updated on 12/Jul/21
arg z_1 ^2 .z = arg z_1 ^2 +arg z = ((7π)/6)  ⇒arg z=((7π)/6)−2arg z_1 =((7π)/6)−((8π)/3)  ⇒ arg z=−((3π)/2)..
$$\mathrm{arg}\:\mathrm{z}_{\mathrm{1}} ^{\mathrm{2}} .\mathrm{z}\:=\:\mathrm{arg}\:\mathrm{z}_{\mathrm{1}} ^{\mathrm{2}} +\mathrm{arg}\:\mathrm{z}\:=\:\frac{\mathrm{7}\pi}{\mathrm{6}} \\ $$$$\Rightarrow\mathrm{arg}\:\mathrm{z}=\frac{\mathrm{7}\pi}{\mathrm{6}}−\mathrm{2arg}\:\mathrm{z}_{\mathrm{1}} =\frac{\mathrm{7}\pi}{\mathrm{6}}−\frac{\mathrm{8}\pi}{\mathrm{3}} \\ $$$$\Rightarrow\:\mathrm{arg}\:\mathrm{z}=−\frac{\mathrm{3}\pi}{\mathrm{2}}.. \\ $$
Commented by mathdanisur last updated on 12/Jul/21
cool Ser, thanks
$${cool}\:{Ser},\:{thanks}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *