Menu Close

If-ax-2-b-x-c-for-all-x-a-b-gt-0-then-prove-minimum-value-of-27ab-2-is-4c-2-




Question Number 15869 by prakash jain last updated on 14/Jun/17
If ax^2 +(b/x)≥c for all x,a,b>0 then  prove minimum value of  27ab^2  is 4c^2 .
Ifax2+bxcforallx,a,b>0thenproveminimumvalueof27ab2is4c2.
Commented by prakash jain last updated on 14/Jun/17
AM≥GM  ((ax^2 +(b/(2x))+(b/(2x)))/3)≥(((ab^2 )/4))^(1/3)   (c/3)≥(((ab^2 )/4))^(1/3)   (c^3 /(27))≥((ab^2 )/4)  4c^3 ≥27ab^2
AMGMax2+b2x+b2x3(ab24)1/3c3(ab24)1/3c327ab244c327ab2
Answered by ajfour last updated on 15/Jun/17
 let   f(x)= ax^2 +(b/x)   minimum value of f(x) = c  as for x→0 , f (x)→∞  and for x→∞ , f(x)→∞   f(x) must have a point of   minima ;   f ′(x)= 2ax−(b/x^2 )   f ′(x)=0   for  x= ((b/(2a)))^(1/3) = x_m    f(x_m )= ax_m ^2 +(b/x_m ) ≥ c     (then)  or    c≤ ((ax_m ^3 +b)/x_m )    c ≤ ((a(b/2a)+b)/((b/2a)^(1/3) )) = ((3b)/2)(((2a)/b))^(1/3)      c^3 ≤ ((27ab^2 )/4)      27ab^2 ≥c^3    is  necessary if     ax^2 +(b/x)≥ c , for all x, a, b>0 .
letf(x)=ax2+bxminimumvalueoff(x)=casforx0,f(x)andforx,f(x)f(x)musthaveapointofminima;f(x)=2axbx2f(x)=0forx=(b2a)1/3=xmf(xm)=axm2+bxmc(then)orcaxm3+bxmca(b/2a)+b(b/2a)1/3=3b2(2ab)1/3c327ab2427ab2c3isnecessaryifax2+bxc,forallx,a,b>0.
Commented by prakash jain last updated on 15/Jun/17
Thanks.
Thanks.

Leave a Reply

Your email address will not be published. Required fields are marked *