Menu Close

If-ax-2-by-2-2hxy-2gx-2fy-c-0-be-the-equation-of-an-ellipse-find-coordinates-of-center-of-ellipse-Q-45506-another-solution-




Question Number 45565 by ajfour last updated on 14/Oct/18
If  ax^2 +by^2 +2hxy+2gx+2fy+c=0  be the equation of an ellipse, find  coordinates of center of ellipse.  Q.45506  (another solution)
Ifax2+by2+2hxy+2gx+2fy+c=0betheequationofanellipse,findcoordinatesofcenterofellipse.Q.45506(anothersolution)
Answered by ajfour last updated on 14/Oct/18
let centre of ellipse be (p,q).  Its equation in standard   orientation be  (((u−p)^2 )/A^2 )+(((v−q)^2 )/B^2 )=1  when rotated by angle φ,  let  (u,v) → (x,y)     u−p = (x−p)cos φ+(y−q)sin φ     v−q = (y−q)cos φ−(x−p)sin φ  Then  (([(x−p)cos φ+(y−q)sin φ]^2 )/A^2 )        +(([(y−q)cos φ−(x−p)sin φ]^2 )/B^2 ) −1    = λ(ax^2 +by^2 +2hxy+2gx+2fy+c)    (for all values of x and y; whether  the expressions on l.h.s. and r.h.s.  be equal to zero or not)  let   y=q_(−)    ,  then  (x−p)^2 (((cos^2 φ)/A^2 )+((sin^2 φ)/B^2 ))     = λ(ax^2 +bq^2 +2hqx+2gx+2fq+c)    ((coeff. of x)/(coeff. of x^2 )) = ((−2p)/1) = ((2(hq+g))/a)  ⇒      ap+hq = −g   ....(i)  similarly  if x=p_(−)  , then   (y−q)^2 (((sin^2 φ)/A^2 )+((cos^2 φ)/B^2 ))      = λ(ap^2 +by^2 +2hpy+2gp+2fy+c)    ((coeff. of y)/(coeff. of y^2 )) = ((−2q)/1) = ((2(hp+f))/b)  ⇒         hp+bq = −f     ....(ii)  Now solving (i) & (ii) for p,q    { ((ap+hq = −g  )),((hp+bq = −f  )) :}         p = ((fh−bg)/(ab−h^2 ))  ;   q = ((gh−af)/(ab−h^2 ))  .
letcentreofellipsebe(p,q).Itsequationinstandardorientationbe(up)2A2+(vq)2B2=1whenrotatedbyangleϕ,let(u,v)(x,y)up=(xp)cosϕ+(yq)sinϕvq=(yq)cosϕ(xp)sinϕThen[(xp)cosϕ+(yq)sinϕ]2A2+[(yq)cosϕ(xp)sinϕ]2B21=λ(ax2+by2+2hxy+2gx+2fy+c)(forallvaluesofxandy;whethertheexpressionsonl.h.s.andr.h.s.beequaltozeroornot)lety=q,then(xp)2(cos2ϕA2+sin2ϕB2)=λ(ax2+bq2+2hqx+2gx+2fq+c)coeff.ofxcoeff.ofx2=2p1=2(hq+g)aap+hq=g.(i)similarlyifx=p,then(yq)2(sin2ϕA2+cos2ϕB2)=λ(ap2+by2+2hpy+2gp+2fy+c)coeff.ofycoeff.ofy2=2q1=2(hp+f)bhp+bq=f.(ii)Nowsolving(i)&(ii)forp,q{ap+hq=ghp+bq=fp=fhbgabh2;q=ghafabh2.
Commented by ajfour last updated on 14/Oct/18
((coeff. of xy)/(coeff. of x^2 −coeff. of y^2 ))        = ((2sin φcos φ((1/A^2 )−(1/B^2 )))/((cos^2 φ−sin^2 φ)((1/A^2 )−(1/B^2 ))))                      = ((2h)/(a−b))    ⇒  tan 2φ = ((2h)/(a−b))  .
coeff.ofxycoeff.ofx2coeff.ofy2=2sinϕcosϕ(1A21B2)(cos2ϕsin2ϕ)(1A21B2)=2habtan2ϕ=2hab.
Commented by MrW3 last updated on 14/Oct/18
thanks a lot sir!
thanksalotsir!
Answered by MJS last updated on 14/Oct/18
solving the given equation for x and y  x=−((hy+g)/a)±(√(...))  y=−((hx+f)/b)±(√(...))  x=−((hy+g)/a) ∧ y=−((hx+f)/b) ⇒  ⇒ x=((fh−bg)/(ab−h^2 )) ∧ y=((gh−af)/(ab−h^2 ))  no matter what kind of conic the equation is,  the center is  ((((fh−bg)/(ab−h^2 ))),(((gh−af)/(ab−h^2 ))) )
solvingthegivenequationforxandyx=hy+ga±y=hx+fb±x=hy+gay=hx+fbx=fhbgabh2y=ghafabh2nomatterwhatkindofconictheequationis,thecenteris(fhbgabh2ghafabh2)
Commented by ajfour last updated on 14/Oct/18
thanks for the simple way sir.
thanksforthesimplewaysir.
Commented by MrW3 last updated on 14/Oct/18
thanks a lot sir!
thanksalotsir!
Commented by MJS last updated on 14/Oct/18
you′re welcome
yourewelcome

Leave a Reply

Your email address will not be published. Required fields are marked *