Question Number 45506 by ajfour last updated on 13/Oct/18
$${If}\:\:\:{ax}^{\mathrm{2}} +{by}^{\mathrm{2}} +\mathrm{2}{hxy}+\mathrm{2}{gx}+\mathrm{2}{fy}+{c}=\mathrm{0} \\ $$$${be}\:{the}\:{equation}\:{of}\:{an}\:{ellipse},\:{find} \\ $$$${coordinates}\:{of}\:{its}\:{centre}. \\ $$
Answered by MrW3 last updated on 14/Oct/18
$${let}\:\theta={rotation}\:{angle}\:{of}\:{ellipse}\:{and} \\ $$$$\left({p},{q}\right)={center}\:{of}\:{ellipse} \\ $$$${eqn}.\:{of}\:{ellipse}\:{in}\:{uv}−{system}\:{is} \\ $$$$\frac{{u}^{\mathrm{2}} }{{U}^{\mathrm{2}} }+\frac{{v}^{\mathrm{2}} }{{V}^{\mathrm{2}} }=\mathrm{1} \\ $$$$ \\ $$$${x}={u}\:\mathrm{cos}\:\theta−{v}\:\mathrm{sin}\:\theta+{p} \\ $$$${y}={u}\:\mathrm{sin}\:\theta+{v}\:\mathrm{cos}\:\theta+{q} \\ $$$$ \\ $$$${ax}^{\mathrm{2}} ={a}\:\mathrm{cos}^{\mathrm{2}} \:\theta\:{u}^{\mathrm{2}} +{a}\:\mathrm{sin}^{\mathrm{2}} \:\theta\:{v}^{\mathrm{2}} −{a}\:\mathrm{sin}\:\mathrm{2}\theta\:{uv}+\mathrm{2}{ap}\:\mathrm{cos}\:\theta\:{u}−\mathrm{2}{ap}\:\mathrm{sin}\:\theta\:{v}+{ap}^{\mathrm{2}} \\ $$$${by}^{\mathrm{2}} ={b}\:\mathrm{sin}^{\mathrm{2}} \:\theta\:{u}^{\mathrm{2}} +{b}\:\mathrm{cos}^{\mathrm{2}} \:\theta\:{v}^{\mathrm{2}} +{b}\:\mathrm{sin}\:\mathrm{2}\theta\:{uv}+\mathrm{2}{bq}\:\mathrm{sin}\:\theta\:{u}+\mathrm{2}{bq}\:\mathrm{cos}\:\theta\:{v}+{bq}^{\mathrm{2}} \\ $$$$\mathrm{2}{hxy}={h}\:\mathrm{sin}\:\mathrm{2}\theta\:{u}^{\mathrm{2}} −{h}\:\mathrm{sin}\:\mathrm{2}\theta\:{v}^{\mathrm{2}} +\mathrm{2}{h}\:\mathrm{cos}\:\mathrm{2}\theta\:{uv}+\mathrm{2}{h}\left({p}\:\mathrm{sin}\:\theta+{q}\:\mathrm{cos}\:\theta\right)\:{u}+\mathrm{2}{h}\left({p}\:\mathrm{cos}\:\theta−{q}\:\mathrm{sin}\:\theta\right){v}+\mathrm{2}{hpq} \\ $$$$\mathrm{2}{gx}=\mathrm{2}{g}\:\mathrm{cos}\:\theta\:{u}−\mathrm{2}{g}\:\mathrm{sin}\:\theta\:{v}+\mathrm{2}{gp} \\ $$$$\mathrm{2}{fy}=\mathrm{2}{f}\:\mathrm{sin}\:\theta\:{u}+\mathrm{2}{f}\:\mathrm{cos}\:\theta\:{v}+\mathrm{2}{fq}+{c} \\ $$$$ \\ $$$${term}\:{u}^{\mathrm{2}} =\:{A}={a}\:\mathrm{cos}^{\mathrm{2}} \:\theta+{b}\:\mathrm{sin}^{\mathrm{2}} \:\theta+{h}\:\mathrm{sin}\:\mathrm{2}\theta \\ $$$${term}\:{v}^{\mathrm{2}} =\:{B}={a}\:\mathrm{sin}^{\mathrm{2}} \:\theta+{b}\:\mathrm{cos}^{\mathrm{2}} \:\theta−{h}\:\mathrm{sin}\:\mathrm{2}\theta \\ $$$${term}\:{uv}={C}=−\left({a}−{b}\right)\:\mathrm{sin}\:\mathrm{2}\theta+\mathrm{2}{h}\:\mathrm{cos}\:\mathrm{2}\theta \\ $$$${term}\:{u}={D}=\mathrm{2}{ap}\:\mathrm{cos}\:\theta+\mathrm{2}{bq}\:\mathrm{sin}\:\theta+\mathrm{2}{h}\left({p}\:\mathrm{sin}\:\theta+{q}\:\mathrm{cos}\:\theta\right)+\mathrm{2}{g}\:\mathrm{cos}\:\theta+\mathrm{2}{f}\:\mathrm{sin}\:\theta \\ $$$${term}\:{v}={E}=−\mathrm{2}{ap}\:\mathrm{sin}\:\theta+\mathrm{2}{bq}\:\mathrm{cos}\:\theta+\mathrm{2}{h}\left({p}\:\mathrm{cos}\:\theta−{q}\:\mathrm{sin}\:\theta\right)−\mathrm{2}{g}\:\mathrm{sin}\:\theta+\mathrm{2}{f}\:\mathrm{cos}\:\theta \\ $$$${term}\:{const}={F}={ap}^{\mathrm{2}} +{bq}^{\mathrm{2}} +\mathrm{2}{hpq}+\mathrm{2}{gp}+\mathrm{2}{fq} \\ $$$$ \\ $$$$\frac{{u}^{\mathrm{2}} }{{U}^{\mathrm{2}} }+\frac{{v}^{\mathrm{2}} }{{V}^{\mathrm{2}} }−\mathrm{1}=\mathrm{0} \\ $$$${C}=−{a}\:\mathrm{sin}\:\mathrm{2}\theta+{b}\:\mathrm{sin}\:\mathrm{2}\theta+\mathrm{2}{h}\:\mathrm{cos}\:\mathrm{2}\theta=\mathrm{0} \\ $$$$\Rightarrow\mathrm{tan}\:\mathrm{2}\theta=\frac{\mathrm{2}{h}}{{a}−{b}}\Rightarrow\theta=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{2}{h}}{{a}−{b}} \\ $$$$ \\ $$$${D}=\mathrm{2}{ap}\:\mathrm{cos}\:\theta+\mathrm{2}{bq}\:\mathrm{sin}\:\theta+\mathrm{2}{h}\left({p}\:\mathrm{sin}\:\theta+{q}\:\mathrm{cos}\:\theta\right)+\mathrm{2}{g}\:\mathrm{cos}\:\theta+\mathrm{2}{f}\:\mathrm{sin}\:\theta=\mathrm{0} \\ $$$$\Rightarrow\left({a}\:\mathrm{cos}\:\theta+{h}\:\mathrm{sin}\:\theta\right){p}+\left({b}\:\mathrm{sin}\:\theta+{h}\:\mathrm{cos}\:\theta\right){q}+\left({g}\:\mathrm{cos}\:\theta+{f}\:\mathrm{sin}\:\theta\right)=\mathrm{0} \\ $$$${E}=−\mathrm{2}{ap}\:\mathrm{sin}\:\theta+\mathrm{2}{bq}\:\mathrm{cos}\:\theta+\mathrm{2}{h}\left({p}\:\mathrm{cos}\:\theta−{q}\:\mathrm{sin}\:\theta\right)−\mathrm{2}{g}\:\mathrm{sin}\:\theta+\mathrm{2}{f}\:\mathrm{cos}\:\theta=\mathrm{0} \\ $$$$\Rightarrow\left(−{a}\:\mathrm{sin}\:\theta+{h}\:\mathrm{cos}\:\theta\right){p}+\left({b}\:\mathrm{cos}\:\theta−{h}\:\mathrm{sin}\:\theta\right){q}−{g}\:\mathrm{sin}\:\theta+{f}\:\mathrm{cos}\:\theta=\mathrm{0} \\ $$$$ \\ $$$$\left\{\left({a}\:\mathrm{cos}\:\theta+{h}\:\mathrm{sin}\:\theta\right)\left({b}\:\mathrm{cos}\:\theta−{h}\:\mathrm{sin}\:\theta\right)−\left(−{a}\:\mathrm{sin}\:\theta+{h}\:\mathrm{cos}\:\theta\right)\left({b}\:\mathrm{sin}\:\theta+{h}\:\mathrm{cos}\:\theta\right)\right\}{p}+\left\{\left({g}\:\mathrm{cos}\:\theta+{f}\:\mathrm{sin}\:\theta\right)\left({b}\:\mathrm{cos}\:\theta−{h}\:\mathrm{sin}\:\theta\right)−\left(−{g}\:\mathrm{sin}\:\theta+{f}\:\mathrm{cos}\:\theta\right)\left({b}\:\mathrm{sin}\:\theta+{h}\:\mathrm{cos}\:\theta\right)\right\}=\mathrm{0} \\ $$$$\left\{\left({ab}\:\mathrm{cos}^{\mathrm{2}} \:\theta+\frac{{bh}}{\mathrm{2}}\:\mathrm{sin}\:\mathrm{2}\theta−\frac{{ah}}{\mathrm{2}}\:\mathrm{sin}\:\mathrm{2}\theta−{h}^{\mathrm{2}} \:\mathrm{sin}^{\mathrm{2}} \:\theta\right)−\left(−{ab}\:\mathrm{sin}^{\mathrm{2}} \:\theta+\frac{{bh}}{\mathrm{2}}\:\mathrm{sin}\:\mathrm{2}\theta−\frac{{ah}}{\mathrm{2}}\:\mathrm{sin}\:\mathrm{2}\theta+{h}^{\mathrm{2}} \:\mathrm{cos}^{\mathrm{2}} \:\theta\right)\right\}{p}+\left\{\left({bg}\:\mathrm{cos}^{\mathrm{2}} \:\theta+\frac{{bf}}{\mathrm{2}}\:\mathrm{sin}\:\mathrm{2}\theta−\frac{{gh}}{\mathrm{2}}\:\mathrm{sin}\:\mathrm{2}\theta−{fh}\:\mathrm{sin}^{\mathrm{2}} \:\theta\right)−\left(−{bg}\:\mathrm{sin}^{\mathrm{2}} \:\theta+\frac{{bf}}{\mathrm{2}}\:\mathrm{sin}\:\mathrm{2}\theta−\frac{{gh}}{\mathrm{2}}\:\mathrm{sin}\:\mathrm{2}\theta+{fh}\:\mathrm{cos}^{\mathrm{2}} \:\theta\right)\right\}=\mathrm{0} \\ $$$$\left({ab}−{h}^{\mathrm{2}} \right){p}+\left({bg}−{fh}\right)=\mathrm{0} \\ $$$$\Rightarrow{p}=\frac{{fh}−{bg}}{{ab}−{h}^{\mathrm{2}} } \\ $$$${to}\:{be}\:{continued}.. \\ $$
Commented by MrW3 last updated on 14/Oct/18
$${continue}… \\ $$$$ \\ $$$$\left\{\left({b}\:\mathrm{sin}\:\theta+{h}\:\mathrm{cos}\:\theta\right)\left(−{a}\:\mathrm{sin}\:\theta+{h}\:\mathrm{cos}\:\theta\right)−\left({b}\:\mathrm{cos}\:\theta−{h}\:\mathrm{sin}\:\theta\right)\left({a}\:\mathrm{cos}\:\theta+{h}\:\mathrm{sin}\:\theta\right)\right\}{q}+\left\{\left({g}\:\mathrm{cos}\:\theta+{f}\:\mathrm{sin}\:\theta\right)\left(−{a}\:\mathrm{sin}\:\theta+{h}\:\mathrm{cos}\:\theta\right)−\left(−{g}\:\mathrm{sin}\:\theta+{f}\:\mathrm{cos}\:\theta\right)\left({a}\:\mathrm{cos}\:\theta+{h}\:\mathrm{sin}\:\theta\right)\right\}=\mathrm{0} \\ $$$$\left({h}^{\mathrm{2}} −{ab}\right){q}+\left({gh}−{af}\right)=\mathrm{0} \\ $$$$ \\ $$$$\Rightarrow{p}=\frac{{fh}−{bg}}{{ab}−{h}^{\mathrm{2}} } \\ $$$$\Rightarrow{q}=\frac{{gh}−{af}}{{ab}−{h}^{\mathrm{2}} } \\ $$$$\Rightarrow\theta=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{2}{h}}{{a}−{b}} \\ $$$$ \\ $$$${A}={a}\:\mathrm{cos}^{\mathrm{2}} \:\theta+{b}\:\mathrm{sin}^{\mathrm{2}} \:\theta+{h}\:\mathrm{sin}\:\mathrm{2}\theta \\ $$$${B}={a}\:\mathrm{sin}^{\mathrm{2}} \:\theta+{b}\:\mathrm{cos}^{\mathrm{2}} \:\theta−{h}\:\mathrm{sin}\:\mathrm{2}\theta \\ $$$${F}={ap}^{\mathrm{2}} +{bq}^{\mathrm{2}} +\mathrm{2}{hpq}+\mathrm{2}{gp}+\mathrm{2}{fq}+{c} \\ $$$$ \\ $$$${major}\:{and}\:{minor}\:{axis}\:{of}\:{ellipse}: \\ $$$${U}=\sqrt{−\frac{{F}}{{A}}} \\ $$$${V}=\sqrt{−\frac{{F}}{{B}}} \\ $$
Commented by ajfour last updated on 14/Oct/18
$${Thank}\:{you}\:{Sir},\:{i}\:{believe}\:{it}\:{can} \\ $$$${be}\:{found}\:{some}\:{other}\:{way}\:{too},\:{let} \\ $$$${me}\:{try}.. \\ $$