Menu Close

If-b-gt-1-x-gt-0-and-2x-log-b-2-3x-log-b-3-0-then-x-is-




Question Number 111721 by Aina Samuel Temidayo last updated on 04/Sep/20
If b>1,x>0 and (2x)^(log_b 2) −(3x)^(log_b 3) =0,  then x is
$$\mathrm{If}\:\mathrm{b}>\mathrm{1},\mathrm{x}>\mathrm{0}\:\mathrm{and}\:\left(\mathrm{2x}\right)^{\mathrm{log}_{\mathrm{b}} \mathrm{2}} −\left(\mathrm{3x}\right)^{\mathrm{log}_{\mathrm{b}} \mathrm{3}} =\mathrm{0}, \\ $$$$\mathrm{then}\:\mathrm{x}\:\mathrm{is} \\ $$
Answered by Her_Majesty last updated on 05/Sep/20
(2x)^(log_b  2) =(3x)^(log_b  3)   log_b  2 ×ln(2x)=log_b  3 ×ln(3x)  ((ln 2)/(ln b))ln (2x)=((ln 3)/(ln b))ln (3x)  ln 2 (ln 2 +ln x)=ln 3 (ln 3 +ln x)  (ln 2)^2 +ln 2 ln x =(ln 3)^2 +ln 3 ln x  (ln 3 −ln 2)ln x =(ln 2)^2 −(ln 3)^2   ln x =(((ln 3 −ln 3)(ln 2 +ln 3))/(ln 3 −ln 2))  ln x =−(ln 2 +ln 3)  ln x =−ln 6  ln x =ln (1/6)  x=(1/6)
$$\left(\mathrm{2}{x}\right)^{{log}_{{b}} \:\mathrm{2}} =\left(\mathrm{3}{x}\right)^{{log}_{{b}} \:\mathrm{3}} \\ $$$${log}_{{b}} \:\mathrm{2}\:×{ln}\left(\mathrm{2}{x}\right)={log}_{{b}} \:\mathrm{3}\:×{ln}\left(\mathrm{3}{x}\right) \\ $$$$\frac{{ln}\:\mathrm{2}}{{ln}\:{b}}{ln}\:\left(\mathrm{2}{x}\right)=\frac{{ln}\:\mathrm{3}}{{ln}\:{b}}{ln}\:\left(\mathrm{3}{x}\right) \\ $$$${ln}\:\mathrm{2}\:\left({ln}\:\mathrm{2}\:+{ln}\:{x}\right)={ln}\:\mathrm{3}\:\left({ln}\:\mathrm{3}\:+{ln}\:{x}\right) \\ $$$$\left({ln}\:\mathrm{2}\right)^{\mathrm{2}} +{ln}\:\mathrm{2}\:{ln}\:{x}\:=\left({ln}\:\mathrm{3}\right)^{\mathrm{2}} +{ln}\:\mathrm{3}\:{ln}\:{x} \\ $$$$\left({ln}\:\mathrm{3}\:−{ln}\:\mathrm{2}\right){ln}\:{x}\:=\left({ln}\:\mathrm{2}\right)^{\mathrm{2}} −\left({ln}\:\mathrm{3}\right)^{\mathrm{2}} \\ $$$${ln}\:{x}\:=\frac{\left({ln}\:\mathrm{3}\:−{ln}\:\mathrm{3}\right)\left({ln}\:\mathrm{2}\:+{ln}\:\mathrm{3}\right)}{{ln}\:\mathrm{3}\:−{ln}\:\mathrm{2}} \\ $$$${ln}\:{x}\:=−\left({ln}\:\mathrm{2}\:+{ln}\:\mathrm{3}\right) \\ $$$${ln}\:{x}\:=−{ln}\:\mathrm{6} \\ $$$${ln}\:{x}\:={ln}\:\frac{\mathrm{1}}{\mathrm{6}} \\ $$$${x}=\frac{\mathrm{1}}{\mathrm{6}} \\ $$
Commented by Aina Samuel Temidayo last updated on 05/Sep/20
Thanks.
$$\mathrm{Thanks}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *