Menu Close

If-B-R-P-1-B-2-R-2-P-2-17-B-3-R-3-P-3-11-then-B-5-R-5-P-5-




Question Number 186929 by cortano12 last updated on 12/Feb/23
  If  { ((B+R+P=−1)),((B^2 +R^2 +P^2 =17)),((B^3 +R^3 +P^3 =11)) :}   then B^5 +R^5 +P^5  =?
If{B+R+P=1B2+R2+P2=17B3+R3+P3=11thenB5+R5+P5=?
Answered by mr W last updated on 12/Feb/23
method I  p_1 =e_1 =−1  p_2 =e_1 p_1 −2e_2   17=(−1)^2 −2e_2  ⇒e_2 =−8  p_3 =e_1 p_2 −e_2 p_1 +3e_3   11=−1×17−(−8)(−1)+3e_3  ⇒e_3 =12  p_4 =e_1 p_3 −e_2 p_2 +e_3 p_1 =−1×11+8×17−12×1=113  p_5 =e_1 p_4 −e_2 p_3 +e_3 p_2 =−1×113+8×11+12×17=179  i.e. B^5 +R^5 +P^5 =179
methodIp1=e1=1p2=e1p12e217=(1)22e2e2=8p3=e1p2e2p1+3e311=1×17(8)(1)+3e3e3=12p4=e1p3e2p2+e3p1=1×11+8×1712×1=113p5=e1p4e2p3+e3p2=1×113+8×11+12×17=179i.e.B5+R5+P5=179
Answered by mr W last updated on 12/Feb/23
method II  i write a,b,c instead of B,R,P.  a+b+c=−1  (a+b+c)^2 =a^2 +b^2 +c^2 +2(ab+bc+ca)  (−1)^2 =17+2(ab+bc+ca)  ⇒ab+bc+ca=−8  (a+b+c)^3 =a^3 +b^3 +c^3 −3abc+3(a+b+c)(ab+bc+ca)  (−1)^3 =11−3abc+3(−1)(−8)  ⇒abc=12  (ab+bc+ca)^2 =a^2 b^2 +b^2 c^2 +c^2 a^2 +2abc(a+b+c)  (−8)^2 =a^2 b^2 +b^2 c^2 +c^2 a^2 +2×12(−1)  ⇒a^2 b^2 +b^2 c^2 +c^2 a^2 =88  (a^2 +b^2 +c^2 )(a^3 +b^3 +c^3 )=a^5 +b^5 +c^5 +(a+b+c)(a^2 b^2 +b^2 c^2 +c^2 a^2 )−abc(ab+bc+ca)  (17)(11)=a^5 +b^5 +c^5 +(−1)(88)−12(−8)  ⇒a^5 +b^5 +c^5 =179
methodIIiwritea,b,cinsteadofB,R,P.a+b+c=1(a+b+c)2=a2+b2+c2+2(ab+bc+ca)(1)2=17+2(ab+bc+ca)ab+bc+ca=8(a+b+c)3=a3+b3+c33abc+3(a+b+c)(ab+bc+ca)(1)3=113abc+3(1)(8)abc=12(ab+bc+ca)2=a2b2+b2c2+c2a2+2abc(a+b+c)(8)2=a2b2+b2c2+c2a2+2×12(1)a2b2+b2c2+c2a2=88(a2+b2+c2)(a3+b3+c3)=a5+b5+c5+(a+b+c)(a2b2+b2c2+c2a2)abc(ab+bc+ca)(17)(11)=a5+b5+c5+(1)(88)12(8)a5+b5+c5=179
Answered by horsebrand11 last updated on 12/Feb/23
 T_n =B^n +R^n +P^n    T_0 =B^0 +R^0 +P^0 =3   T_1 =−1=α_1   T_2 =B^2 +R^2 +P^2 =(B+R+P)^2 −2(BR+BP+RP)   ⇒17=1−2(BR+BP+RP)   ⇒ BR+BP+RP = −8=α_2   T_n = α_1 T_(n−1) −α_2 T_(n−2) +α_3 T_(n−3)   T_3 =(−1).17−(−8)(−1)+α_3 (3)=11   ⇒α_3 = 12  T_4 =α_1 T_3 −α_2 T_2 +α_3 T_1   ⇒T_4 = (−1)(11)−(−8)(17)+(12).(−1)  ⇒T_4 = 113  T_5 =α_1 T_4 −α_2 T_3 +α_3 T_2   ⇒T_5 =(−1)(113)−(−8)(11)+(12)(17)  ⇒T_5 =179
Tn=Bn+Rn+PnT0=B0+R0+P0=3T1=1=α1T2=B2+R2+P2=(B+R+P)22(BR+BP+RP)17=12(BR+BP+RP)BR+BP+RP=8=α2Tn=α1Tn1α2Tn2+α3Tn3T3=(1).17(8)(1)+α3(3)=11α3=12T4=α1T3α2T2+α3T1T4=(1)(11)(8)(17)+(12).(1)T4=113T5=α1T4α2T3+α3T2T5=(1)(113)(8)(11)+(12)(17)T5=179

Leave a Reply

Your email address will not be published. Required fields are marked *