Question Number 186929 by cortano12 last updated on 12/Feb/23
$$\:\:{If}\:\begin{cases}{{B}+{R}+{P}=−\mathrm{1}}\\{{B}^{\mathrm{2}} +{R}^{\mathrm{2}} +{P}^{\mathrm{2}} =\mathrm{17}}\\{{B}^{\mathrm{3}} +{R}^{\mathrm{3}} +{P}^{\mathrm{3}} =\mathrm{11}}\end{cases} \\ $$$$\:{then}\:{B}^{\mathrm{5}} +{R}^{\mathrm{5}} +{P}^{\mathrm{5}} \:=? \\ $$
Answered by mr W last updated on 12/Feb/23
$${method}\:{I} \\ $$$${p}_{\mathrm{1}} ={e}_{\mathrm{1}} =−\mathrm{1} \\ $$$${p}_{\mathrm{2}} ={e}_{\mathrm{1}} {p}_{\mathrm{1}} −\mathrm{2}{e}_{\mathrm{2}} \\ $$$$\mathrm{17}=\left(−\mathrm{1}\right)^{\mathrm{2}} −\mathrm{2}{e}_{\mathrm{2}} \:\Rightarrow{e}_{\mathrm{2}} =−\mathrm{8} \\ $$$${p}_{\mathrm{3}} ={e}_{\mathrm{1}} {p}_{\mathrm{2}} −{e}_{\mathrm{2}} {p}_{\mathrm{1}} +\mathrm{3}{e}_{\mathrm{3}} \\ $$$$\mathrm{11}=−\mathrm{1}×\mathrm{17}−\left(−\mathrm{8}\right)\left(−\mathrm{1}\right)+\mathrm{3}{e}_{\mathrm{3}} \:\Rightarrow{e}_{\mathrm{3}} =\mathrm{12} \\ $$$${p}_{\mathrm{4}} ={e}_{\mathrm{1}} {p}_{\mathrm{3}} −{e}_{\mathrm{2}} {p}_{\mathrm{2}} +{e}_{\mathrm{3}} {p}_{\mathrm{1}} =−\mathrm{1}×\mathrm{11}+\mathrm{8}×\mathrm{17}−\mathrm{12}×\mathrm{1}=\mathrm{113} \\ $$$${p}_{\mathrm{5}} ={e}_{\mathrm{1}} {p}_{\mathrm{4}} −{e}_{\mathrm{2}} {p}_{\mathrm{3}} +{e}_{\mathrm{3}} {p}_{\mathrm{2}} =−\mathrm{1}×\mathrm{113}+\mathrm{8}×\mathrm{11}+\mathrm{12}×\mathrm{17}=\mathrm{179} \\ $$$${i}.{e}.\:{B}^{\mathrm{5}} +{R}^{\mathrm{5}} +{P}^{\mathrm{5}} =\mathrm{179} \\ $$
Answered by mr W last updated on 12/Feb/23
$${method}\:{II} \\ $$$${i}\:{write}\:{a},{b},{c}\:{instead}\:{of}\:{B},{R},{P}. \\ $$$${a}+{b}+{c}=−\mathrm{1} \\ $$$$\left({a}+{b}+{c}\right)^{\mathrm{2}} ={a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} +\mathrm{2}\left({ab}+{bc}+{ca}\right) \\ $$$$\left(−\mathrm{1}\right)^{\mathrm{2}} =\mathrm{17}+\mathrm{2}\left({ab}+{bc}+{ca}\right) \\ $$$$\Rightarrow{ab}+{bc}+{ca}=−\mathrm{8} \\ $$$$\left({a}+{b}+{c}\right)^{\mathrm{3}} ={a}^{\mathrm{3}} +{b}^{\mathrm{3}} +{c}^{\mathrm{3}} −\mathrm{3}{abc}+\mathrm{3}\left({a}+{b}+{c}\right)\left({ab}+{bc}+{ca}\right) \\ $$$$\left(−\mathrm{1}\right)^{\mathrm{3}} =\mathrm{11}−\mathrm{3}{abc}+\mathrm{3}\left(−\mathrm{1}\right)\left(−\mathrm{8}\right) \\ $$$$\Rightarrow{abc}=\mathrm{12} \\ $$$$\left({ab}+{bc}+{ca}\right)^{\mathrm{2}} ={a}^{\mathrm{2}} {b}^{\mathrm{2}} +{b}^{\mathrm{2}} {c}^{\mathrm{2}} +{c}^{\mathrm{2}} {a}^{\mathrm{2}} +\mathrm{2}{abc}\left({a}+{b}+{c}\right) \\ $$$$\left(−\mathrm{8}\right)^{\mathrm{2}} ={a}^{\mathrm{2}} {b}^{\mathrm{2}} +{b}^{\mathrm{2}} {c}^{\mathrm{2}} +{c}^{\mathrm{2}} {a}^{\mathrm{2}} +\mathrm{2}×\mathrm{12}\left(−\mathrm{1}\right) \\ $$$$\Rightarrow{a}^{\mathrm{2}} {b}^{\mathrm{2}} +{b}^{\mathrm{2}} {c}^{\mathrm{2}} +{c}^{\mathrm{2}} {a}^{\mathrm{2}} =\mathrm{88} \\ $$$$\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)\left({a}^{\mathrm{3}} +{b}^{\mathrm{3}} +{c}^{\mathrm{3}} \right)={a}^{\mathrm{5}} +{b}^{\mathrm{5}} +{c}^{\mathrm{5}} +\left({a}+{b}+{c}\right)\left({a}^{\mathrm{2}} {b}^{\mathrm{2}} +{b}^{\mathrm{2}} {c}^{\mathrm{2}} +{c}^{\mathrm{2}} {a}^{\mathrm{2}} \right)−{abc}\left({ab}+{bc}+{ca}\right) \\ $$$$\left(\mathrm{17}\right)\left(\mathrm{11}\right)={a}^{\mathrm{5}} +{b}^{\mathrm{5}} +{c}^{\mathrm{5}} +\left(−\mathrm{1}\right)\left(\mathrm{88}\right)−\mathrm{12}\left(−\mathrm{8}\right) \\ $$$$\Rightarrow{a}^{\mathrm{5}} +{b}^{\mathrm{5}} +{c}^{\mathrm{5}} =\mathrm{179} \\ $$
Answered by horsebrand11 last updated on 12/Feb/23
$$\:{T}_{{n}} ={B}^{{n}} +{R}^{{n}} +{P}^{{n}} \: \\ $$$${T}_{\mathrm{0}} ={B}^{\mathrm{0}} +{R}^{\mathrm{0}} +{P}^{\mathrm{0}} =\mathrm{3} \\ $$$$\:{T}_{\mathrm{1}} =−\mathrm{1}=\alpha_{\mathrm{1}} \\ $$$${T}_{\mathrm{2}} ={B}^{\mathrm{2}} +{R}^{\mathrm{2}} +{P}^{\mathrm{2}} =\left({B}+{R}+{P}\right)^{\mathrm{2}} −\mathrm{2}\left({BR}+{BP}+{RP}\right) \\ $$$$\:\Rightarrow\mathrm{17}=\mathrm{1}−\mathrm{2}\left({BR}+{BP}+{RP}\right) \\ $$$$\:\Rightarrow\:{BR}+{BP}+{RP}\:=\:−\mathrm{8}=\alpha_{\mathrm{2}} \\ $$$${T}_{{n}} =\:\alpha_{\mathrm{1}} {T}_{{n}−\mathrm{1}} −\alpha_{\mathrm{2}} {T}_{{n}−\mathrm{2}} +\alpha_{\mathrm{3}} {T}_{{n}−\mathrm{3}} \\ $$$${T}_{\mathrm{3}} =\left(−\mathrm{1}\right).\mathrm{17}−\left(−\mathrm{8}\right)\left(−\mathrm{1}\right)+\alpha_{\mathrm{3}} \left(\mathrm{3}\right)=\mathrm{11} \\ $$$$\:\Rightarrow\alpha_{\mathrm{3}} =\:\mathrm{12} \\ $$$${T}_{\mathrm{4}} =\alpha_{\mathrm{1}} {T}_{\mathrm{3}} −\alpha_{\mathrm{2}} {T}_{\mathrm{2}} +\alpha_{\mathrm{3}} {T}_{\mathrm{1}} \\ $$$$\Rightarrow{T}_{\mathrm{4}} =\:\left(−\mathrm{1}\right)\left(\mathrm{11}\right)−\left(−\mathrm{8}\right)\left(\mathrm{17}\right)+\left(\mathrm{12}\right).\left(−\mathrm{1}\right) \\ $$$$\Rightarrow{T}_{\mathrm{4}} =\:\mathrm{113} \\ $$$${T}_{\mathrm{5}} =\alpha_{\mathrm{1}} {T}_{\mathrm{4}} −\alpha_{\mathrm{2}} {T}_{\mathrm{3}} +\alpha_{\mathrm{3}} {T}_{\mathrm{2}} \\ $$$$\Rightarrow{T}_{\mathrm{5}} =\left(−\mathrm{1}\right)\left(\mathrm{113}\right)−\left(−\mathrm{8}\right)\left(\mathrm{11}\right)+\left(\mathrm{12}\right)\left(\mathrm{17}\right) \\ $$$$\Rightarrow{T}_{\mathrm{5}} =\mathrm{179} \\ $$