Menu Close

If-b-x-b-k-y-k-m-and-b-1-show-that-1-x-1-y-1-m-




Question Number 56335 by Tawa1 last updated on 14/Mar/19
If      b^x   =  ((b/k))^y   =  k^m          and      b ≠ 1  show that:      (1/x) = (1/y) = (1/m)
$$\mathrm{If}\:\:\:\:\:\:\mathrm{b}^{\mathrm{x}} \:\:=\:\:\left(\frac{\mathrm{b}}{\mathrm{k}}\right)^{\mathrm{y}} \:\:=\:\:\mathrm{k}^{\mathrm{m}} \:\:\:\:\:\:\:\:\:\mathrm{and}\:\:\:\:\:\:\mathrm{b}\:\neq\:\mathrm{1} \\ $$$$\mathrm{show}\:\mathrm{that}:\:\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{x}}\:=\:\frac{\mathrm{1}}{\mathrm{y}}\:=\:\frac{\mathrm{1}}{\mathrm{m}} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 14/Mar/19
b^x =((b/k))^y =k^m =r(assumed)  b^x =r→b=(r)^(1/x)   k^m =r  →k=(r)^(1/m)   ((b/k))^y =r  ((r^(1/x) /r^(1/m) ))^y =r  r^((1/x)−(1/m))  =r^(1/y)   (1/x)−(1/m)=(1/y)  (1/x)+(1/y)=(1/m)
$${b}^{{x}} =\left(\frac{{b}}{{k}}\right)^{{y}} ={k}^{{m}} ={r}\left({assumed}\right) \\ $$$${b}^{{x}} ={r}\rightarrow{b}=\left({r}\right)^{\frac{\mathrm{1}}{{x}}} \\ $$$${k}^{{m}} ={r}\:\:\rightarrow{k}=\left({r}\right)^{\frac{\mathrm{1}}{{m}}} \\ $$$$\left(\frac{{b}}{{k}}\right)^{{y}} ={r} \\ $$$$\left(\frac{{r}^{\frac{\mathrm{1}}{{x}}} }{{r}^{\frac{\mathrm{1}}{{m}}} }\right)^{{y}} ={r} \\ $$$${r}^{\frac{\mathrm{1}}{{x}}−\frac{\mathrm{1}}{{m}}} \:={r}^{\frac{\mathrm{1}}{{y}}} \\ $$$$\frac{\mathrm{1}}{{x}}−\frac{\mathrm{1}}{{m}}=\frac{\mathrm{1}}{{y}} \\ $$$$\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{y}}=\frac{\mathrm{1}}{{m}}\:\:\: \\ $$
Commented by Tawa1 last updated on 14/Mar/19
God bless you sir
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$
Answered by $@ty@m last updated on 30/Mar/19
From b^x =k^m  we get  b=k^(m/x)   −−(1)  From ((b/k))^y =k^m  we get  b=k^((m+y)/y) −−(2)  From (1) & (2),  (m/x)=((m+y)/y)  (m/x)=(m/y)+1  (m/x)=(m/y)+(m/m)  (m/x)=m((1/y)+(1/m))  (1/x)=(1/y)+(1/m)
$${From}\:{b}^{{x}} ={k}^{{m}} \:{we}\:{get} \\ $$$${b}={k}^{\frac{{m}}{{x}}} \:\:−−\left(\mathrm{1}\right) \\ $$$${From}\:\left(\frac{{b}}{{k}}\right)^{{y}} ={k}^{{m}} \:{we}\:{get} \\ $$$${b}={k}^{\frac{{m}+{y}}{{y}}} −−\left(\mathrm{2}\right) \\ $$$${From}\:\left(\mathrm{1}\right)\:\&\:\left(\mathrm{2}\right), \\ $$$$\frac{{m}}{{x}}=\frac{{m}+{y}}{{y}} \\ $$$$\frac{{m}}{{x}}=\frac{{m}}{{y}}+\mathrm{1} \\ $$$$\frac{{m}}{{x}}=\frac{{m}}{{y}}+\frac{{m}}{{m}} \\ $$$$\frac{{m}}{{x}}={m}\left(\frac{\mathrm{1}}{{y}}+\frac{\mathrm{1}}{{m}}\right) \\ $$$$\frac{\mathrm{1}}{{x}}=\frac{\mathrm{1}}{{y}}+\frac{\mathrm{1}}{{m}} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *