Menu Close

If-b-Z-both-the-roots-of-equation-x-2-bx-132-0-are-integers-Find-1-the-largest-possible-value-of-b-2-the-smallest-possible-value-of-b-




Question Number 111035 by ZiYangLee last updated on 01/Sep/20
If b∈Z^+  ∀ both the roots of equation  x^2 −bx+132=0 are integers.  Find  (1)the largest possible value of b  (2)the smallest possible value of b.
IfbZ+boththerootsofequationx2bx+132=0areintegers.Find(1)thelargestpossiblevalueofb(2)thesmallestpossiblevalueofb.
Answered by 1549442205PVT last updated on 02/Sep/20
x^2 −bx+132=(x−m)(x−n)  ⇔ { ((m+n=b>0)),((mn=132=3.11.4)) :}  WLOG suppose m≤n  ⇒m∈{1,2,3,4,6,11}  i)m=1⇒n=132⇒m+n=133  ii)m=2⇒n=66⇒m+n=68  iii)m=3⇒n=44⇒m+n=47  iv)m=4⇒n=33⇒m+n=37  v)m=6⇒n=22⇒m+n=28  vi)m=11⇒n=12⇒m+n=23  Thus,b=m+n get smallest value  equal to 23 so that the given eq.  x^2 −bx+132 has both its roots are  integers
x2bx+132=(xm)(xn){m+n=b>0mn=132=3.11.4WLOGsupposemnm{1,2,3,4,6,11}i)m=1n=132m+n=133ii)m=2n=66m+n=68iii)m=3n=44m+n=47iv)m=4n=33m+n=37v)m=6n=22m+n=28vi)m=11n=12m+n=23Thus,b=m+ngetsmallestvalueequalto23sothatthegiveneq.x2bx+132hasbothitsrootsareintegers
Commented by 1549442205PVT last updated on 02/Sep/20
Since m+n=b>0,but mn=132 ,so  both are positive,Sir!
Sincem+n=b>0,butmn=132,sobotharepositive,Sir!
Commented by Her_Majesty last updated on 01/Sep/20
m>0∧n>0 or m<0∧n<0 ⇒ check your  answer. the method is ok
m>0n>0orm<0n<0checkyouranswer.themethodisok
Commented by Her_Majesty last updated on 02/Sep/20
sorry I missed that b∈Z^+ , you are right
sorryImissedthatbZ+,youareright

Leave a Reply

Your email address will not be published. Required fields are marked *