Menu Close

If-C-r-C-s-are-cyclic-groups-such-that-g-c-d-r-s-1-then-show-that-C-r-C-s-is-a-cyclic-group-Mastermind-




Question Number 171314 by Mastermind last updated on 12/Jun/22
If C_r , C_s  are cyclic groups such that  g.c.d(r,s)=1, then show that C_r ×C_s  is  a cyclic group.    Mastermind
$${If}\:{C}_{{r}} ,\:{C}_{{s}} \:{are}\:{cyclic}\:{groups}\:{such}\:{that} \\ $$$${g}.{c}.{d}\left({r},{s}\right)=\mathrm{1},\:{then}\:{show}\:{that}\:{C}_{{r}} ×{C}_{{s}} \:{is} \\ $$$${a}\:{cyclic}\:{group}. \\ $$$$ \\ $$$${Mastermind} \\ $$
Answered by mindispower last updated on 12/Jun/22
C_r  cyclic ⇒∃a∈C_r ...such ∀g∈C_r  ∃n∈{0,....r−1}  a^n =g  C_s cyclic ⇒∃b∈C_s ..such ∀g′∈C_s .∃m∈{0,....s−1}  b^m =g′  we use standar definition of product of/Groups  card (C_r ∗C_s )≤rs  (a,b)∗.....(a,b)...(rs) =((a^r )^s ,(b^s )^r )=(e,e′)Times  (a^x ,b^x )=(e,e′)⇒r∣x,s∣x⇒rs∣x...gcd(r,s)=1  ⇒rs∣card (C_r ∗C_s )⇒card (C_r ∗C_s )=rs  and C_r ∗C_s =<(a,b) >
$${C}_{{r}} \:{cyclic}\:\Rightarrow\exists{a}\in{C}_{{r}} …{such}\:\forall{g}\in{C}_{{r}} \:\exists{n}\in\left\{\mathrm{0},….{r}−\mathrm{1}\right\} \\ $$$${a}^{{n}} ={g} \\ $$$${C}_{{s}} {cyclic}\:\Rightarrow\exists{b}\in{C}_{{s}} ..{such}\:\forall{g}'\in{C}_{{s}} .\exists{m}\in\left\{\mathrm{0},….{s}−\mathrm{1}\right\} \\ $$$${b}^{{m}} ={g}' \\ $$$${we}\:{use}\:{standar}\:{definition}\:{of}\:{product}\:{of}/{Groups} \\ $$$${card}\:\left({C}_{{r}} \ast{C}_{{s}} \right)\leqslant{rs} \\ $$$$\left({a},{b}\right)\ast…..\left({a},{b}\right)…\left({rs}\right)\:=\left(\left({a}^{{r}} \right)^{{s}} ,\left({b}^{{s}} \right)^{{r}} \right)=\left({e},{e}'\right){Times} \\ $$$$\left({a}^{{x}} ,{b}^{{x}} \right)=\left({e},{e}'\right)\Rightarrow{r}\mid{x},{s}\mid{x}\Rightarrow{rs}\mid{x}…{gcd}\left({r},{s}\right)=\mathrm{1} \\ $$$$\Rightarrow{rs}\mid{card}\:\left({C}_{{r}} \ast{C}_{{s}} \right)\Rightarrow{card}\:\left({C}_{{r}} \ast{C}_{{s}} \right)={rs} \\ $$$${and}\:{C}_{{r}} \ast{C}_{{s}} =<\left({a},{b}\right)\:> \\ $$$$ \\ $$$$ \\ $$
Commented by Mastermind last updated on 14/Jun/22
Thanks
$${Thanks} \\ $$
Commented by mindispower last updated on 19/Jun/22
withe pleasur
$${withe}\:{pleasur} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *